Đề kiểm tra 15 phút - Đề số 4 - Bài 11 - Chương 1 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 4 - Bài 11 - Chương 1 - Đại số 8

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Làm tính chia: 

a) \(\left( { - {2 \over 3}{x^5}{y^2} + {3 \over 4}{x^4}{y^3} - {4 \over 5}{x^3}{y^4}} \right):\left( {6{x^2}{y^2}} \right)\).

b) \(\left( {{3 \over 4}{a^6}{b^3} + {6 \over 5}{a^3}{b^4} - {9 \over {10}}a{b^5}} \right):\left( {{3 \over 5}a{b^3}} \right)\) 

Bài 2. Rút gọn biểu thức: \(\left( {12{x^3} - 8x} \right):\left( {4x} \right) - 4x\left( {3x + {1 \over 4}} \right).\)

Bài 3. Tính giá trị của biểu thức : \(\left( {18{a^4} - 27{a^3}} \right):\left( {9{a^2}} \right) - 10{a^3}:\left( {5a} \right),\) tại \(a =  - 8.\)

LG bài 1

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

a) \(\left( { - {2 \over 3}{x^5}{y^2} + {3 \over 4}{x^4}{y^3} - {4 \over 5}{x^3}{y^4}} \right):\left( {6{x^2}{y^2}} \right)\)

\( = \left( { - {2 \over 3}{x^5}{y^2}:6{x^2}{y^2}} \right)\)\(\; + \left( {{3 \over 4}{x^4}{y^3}:6{x^2}{y^2}} \right) \)\(\;+ \left( { - {4 \over 5}{x^3}{y^4}:6{x^2}{y^2}} \right)\)

\(= - {1 \over 9}{x^3} + {1 \over 8}{x^2}y - {2 \over {15}}x{y^2}.\)

b) \(\left( {{3 \over 4}{a^6}{b^3} + {6 \over 5}{a^3}{b^4} - {9 \over {10}}a{b^5}} \right):\left( {{3 \over 5}a{b^3}} \right)\) 

\(=\left( {{3 \over 4}{a^6}{b^3}:{3 \over 5}a{b^3}} \right) + \left( {{6 \over 5}{a^3}{b^4}:{3 \over 5}a{b^3}} \right) \)\(\;+ \left( { - {9 \over {10}}a{b^5}:{3 \over 5}a{b^3}} \right)\)

\(={5 \over 4}{a^5} + 2{a^2}b - {3 \over 2}{b^2}.\)

LG bài 2

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {12{x^3} - 8x} \right):4x - 4x\left( {3x + {1 \over 4}} \right)\)

\( = \left( {12{x^3}:4x} \right) - \left( {8x:4x} \right) \)\(- 4x.3x - 4x.\frac{1}{4}\)

\( = 3{x^2} - 2 - 12{x^2} - x \)

\(=  - 9{x^2} - x - 2.\)

LG bài 3

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {18{a^4} - 27{a^3}} \right):\left( {9{a^2}} \right) - 10{a^3}:(5a) \)\(\;= 2{a^2} - 3a - 2{a^2} =  - 3a\) 

\( = \left( {18{a^4}:9{a^2}} \right) - \left( {27{a^3}:9{a^2}} \right) - \left( {10{a^3}:5a} \right)\)

Thay \(a =  - 8,\) ta được: \(\left( { - 3} \right).\left( { - 8} \right) = 24.\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí