Đề kiểm tra 15 phút - Đề số 3 - Bài 11 - Chương 1 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 11 - Chương 1 - Đại số 8

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Làm tính chia: 

a)\(\left( { - {a^5}{b^3} + 3{a^6}{b^2}} \right):\left( {4{a^4}{b^2}} \right)\)

b)\(\left( {{1 \over 3}{a^3}b + {1 \over 3}{a^2}{b^2} - {1 \over 4}a{b^3}} \right):\left( {5ab} \right).\)

Bài 2. Rút gọn biểu thức: \(\left( {3{x^4} + {1 \over 3}{x^2}} \right):x - {x^3}:\left( {3{x^2}} \right) + {\left( {3x} \right)^3}.\)

Bài 3. Tính giá trị của biểu thức: \(\left( {3{x^3} + 4{x^2}y} \right):{x^2} - \left( {10xy + 15{y^2}} \right):\left( {5y} \right)\) tại \(x = 2;y =  - 5.\)

LG bài 1

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

a) \(\left( { - {a^5}{b^3} + 3{a^6}{b^2}} \right):\left( {4{a^4}{b^2}} \right) \)

\(= \left[ {\left( { - {a^5}{b^3}} \right):\left( {4{a^4}{b^2}} \right)} \right] + \left[ {\left( {3{a^6}{b^2}} \right):\left( {4{a^4}{b^2}} \right)} \right]\)

\( =  - {1 \over 4}ab + {3 \over 4}{a^2}.\)

b) \(\left( {{1 \over 3}{a^3}b + {1 \over 3}{a^2}{b^2} - {1 \over 4}a{b^2}} \right):\left( {5ab} \right)\)

\(={1 \over 3}{a^3}b:5ab + {1 \over 3}{a^2}{b^2}:5ab + \left( { - {1 \over 4}a{b^3}} \right):5ab \)

\(= {1 \over {15}}{a^2} + {1 \over {15}}ab - {1 \over {20}}{b^2}.\)

LG bài 2

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {3{x^4} + {1 \over 3}{x^2}} \right):x - {x^3}:\left( {3{x^2}} \right) + {\left( {3x} \right)^3} \)

\( = \left( {3{x^4}:x} \right) + \left( {\frac{1}{3}{x^2}:x} \right) \)\(- \frac{1}{3}\left( {{x^3}:{x^2}} \right) + {3^3}{x^3}\)

\(= 3{x^3} + {1 \over 3}x - {1 \over 3}x + 27{x^3} = 30{x^3}.\)

LG bài 3

Phương pháp giải:

Muốn chia đa thức \(A\) cho đơn thức \(B\) (trường hợp các hạng tử của đa thức \(A\) đều chia hết cho đơn thức \(B\)), ta chia mỗi hạng tử của \(A\) cho \(B\) rồi cộng các kết quả với nhau.

Lời giải chi tiết:

\(\left( {3{x^3} + 4{x^2}y} \right):{x^2} - \left( {10xy + 15{y^2}} \right):\left( {5y} \right) \)

\( = \left( {3{x^3}:{x^2}} \right) + \left( {4{x^2}y:{x^2}} \right) \)\(- \left( {10xy:5y} \right) - \left( {15{y^2}:5y} \right)\)

\(= 3x + 4y - 2x - 3y = x + y.\) 

Thay \(x = 2;y =  - 5,\) ta được: \(2 - 5 =  - 3.\) 

Loigiaihay.com


Bình chọn:
3.4 trên 7 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho 2K10 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 8 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách (Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều). Cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.