Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 1 - Hình học 8

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 6 - Chương 1 - Hình học 8

Đề bài

Tam giác ABC vuông tại A, đường cao AH. Gọi E và F theo thứ tự là các điểm đối xứng của H qua AB và AC.

a) Chứng minh rằng A là trung điểm của đoạn EF.

b) Chứng minh rằng: BC = BE + CF.

Lời giải chi tiết

a) E đối xứng với H qua AB nên AE = AH.

Do đó \(\Delta EAH\) cân có đường cao AB nên AB đồng thời là phân giác của \(\widehat {EAH}\) hay \(\widehat {{A_1}} = \widehat {{A_2}}.\)

Tương tự: \(\widehat {{A_3}} = \widehat {{A_4}},\) mà \(\widehat {{A_2}} + \widehat {{A_3}} = {90^ \circ }(gt)\)

\( \Rightarrow \widehat {{A_1}} + \widehat {{A_2}} + \widehat {{A_3}} + \widehat {{A_4}} = {180^ \circ } \)

\(\Rightarrow E,A,F\) thẳng hàng.

AE = AH (cmt) . Tương tự AH = AF (tính chất đối xứng) \( \Rightarrow AF = AE.\)

Vậy A là trung điểm của đoạn EF.

b)      Dễ thấy BE = BH, CF = CH (tính chất đối xứng)

Mà BC = BH + HC \( \Rightarrow BC = BE + CF.\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 6. Đối xứng trục

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.