Bài 9 trang 40 SGK Toán 8 tập 1

Bình chọn:
4.3 trên 94 phiếu

Giải bài 9 trang 40 SGK Toán 8 tập 1. Áp dụng quy tắc đổi dấu rồi rút gọn phân thức:

Đề bài

Áp dụng quy tắc đổi dấu rồi rút gọn phân thức:

a) \( \frac{36(x - 2)^{3}}{32 - 16x}\);                               b) \( \frac{x^{2}- xy}{5y^{2} - 5xy}\)

Phương pháp giải - Xem chi tiết

- Áp dụng qui tắc đối dấu.

- Phân tích tử và mẫu thành nhân tử để tìm nhân tử chung

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết

a) \( \frac{36(x - 2)^{3}}{32 - 16x} = \frac{36(x - 2)^{3}}{16(2 - x)}= \frac{36(x - 2)^{3}}{-16(x - 2)}\)\(= \frac{9(x - 2)^{2}}{-4}\)

hoặc \( \frac{36(x - 2)^{3}}{32 - 16x} = \frac{36(x - 2)^{3}}{16(2 - x)}= \frac{36(-(x - 2))^{3}}{16(x - 2)}\)\(= \frac{-36(2 - x)^{3}}{16(2 - x)}= \frac{-9(2 - x)^{2}}{4}\)

b) \( \frac{x^{2}- xy}{5y^{2} - 5xy} = \frac{x(x - y)}{5y(y - x)}= \frac{-x(y - x)}{5y(y - x)}= \frac{-x}{5y}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 3. Rút gọn phân thức

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu