Tuyensinh247.com giảm 30% các khóa học từ ngày 10-14/8
Xem ngay

Chỉ còn: 03:38:20

Bài 32 trang 23 SGK Toán 8 tập 2

Bình chọn:
4 trên 81 phiếu

Giải bài 32 trang 23 SGK Toán 8 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) \({1 \over x} + 2 = \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right)\) ;  

b) \({\left( {x + 1 + {1 \over x}} \right)^2} = {\left( {x - 1 - {1 \over x}} \right)^2}\)

Phương pháp giải - Xem chi tiết

- Tìm điều kiện xác định.

- Qui đồng khử mẫu.

- Giải phương trình bằng cách đưa về dạng phương trình tích.

Lời giải chi tiết

a) \({1 \over x} + 2 = \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right)\)     (1)

ĐKXĐ:\(x \ne 0\)

(1)  ⇔\(\left( {{1 \over x} + 2} \right) - \left( {{1 \over x} + 2} \right)\left( {{x^2} + 1} \right) = 0\)

\(\Leftrightarrow \left( {{1 \over x} + 2} \right)\left( {1 - {x^2} - 1} \right) = 0\)

⇔ \(\left( {{1 \over x} + 2} \right)\left( { - {x^2}} \right) = 0\)

⇔\(\left[ {\matrix{{{1 \over x} + 2 = 0} \cr { - {x^2} = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{{1 \over x} = - 2} \cr {{x^2} = 0} \cr} } \right. \)

\(\Leftrightarrow \left[ {\matrix{{x = - {1 \over 2} (tm)} \cr {x = 0} (ktm)\cr} } \right.\)

Vậy phương trình có nghiệm duy nhất \(x = \frac{{ - 1}}{2}\).

b) \({\left( {x + 1 + {1 \over x}} \right)^2} = {\left( {x - 1 - {1 \over x}} \right)^2}\) (2)

ĐKXĐ: \(x \ne 0\)

(2)  ⇔\(\left[ {\matrix{{x + 1 + {1 \over x} = x - 1 - {1 \over x}} \cr {x + 1 + {1 \over x} = - \left( {x - 1 - {1 \over x}} \right)} \cr} } \right.\)

⇔\(\left[ {\matrix{{{2 \over x} = - 2} \cr {2x = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = - 1} (tm)\cr {x = 0} \cr}(ktm) } \right.} \right.\)

Vậy phương trình có nghiệm duy nhất \(x = -1\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan