Bài 31 trang 23 SGK Toán 8 tập 2


Giải bài 31 trang 23 SGK Toán 8 tập 2. Giải các phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a.

\(\dfrac{1}{{x - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x}}{{{x^2} + x + 1}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Giải chi tiết:

\(\dfrac{1}{{x - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x}}{{{x^2} + x + 1}}\)

Ta có: \(x - 1 ≠ 0⇔ x ≠ 1\) và \({x^3} - 1 \ne 0\) khi \(x^3 \ne 1\) hay \(x \ne 1\)

\(  {x^2+x + 1} = {{x^2} + x + \dfrac{1}{4} + \dfrac{3}{4}} \)

\( =  {{x^2} + 2.x.\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\)

\(= {{{\left( {x + \dfrac{1}{2}} \right)}^2} + \dfrac{3}{4}}\) 

Ta có: \({\left( {x + \dfrac{1}{2}} \right)^2} \geqslant 0\) với mọi \(x \in\mathbb R\) nên \({\left( {x + \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} > 0\) với mọi \(x \in\mathbb R\)

Do đó: 

ĐKXĐ:  \(x ≠ 1\)

MTC: \({x^3} - 1=(x-1)(x^2+x+1)\)

\(  \Leftrightarrow \dfrac{{{x^2} + x + 1}}{{{x^3} - 1}} - \dfrac{{3{x^2}}}{{{x^3} - 1}} = \dfrac{{2x\left( {x - 1} \right)}}{{{x^3} - 1}}\)

\(\Rightarrow {x^2} + x + 1 - 3{x^2} = 2x\left( {x - 1} \right) \)

\(\Leftrightarrow  - 2{x^2} + x + 1 = 2{x^2} - 2x\)

\( \Leftrightarrow 0 = 2{x^2} - 2x + 2{x^2} - x - 1\)

\( \Leftrightarrow 0 = 4{x^2} - 3x - 1\)

\(\Leftrightarrow 4{x^2} - 3x - 1 = 0\)

\(\Leftrightarrow 4{x^2} - 4x+x - 1 = 0\)

\(\Leftrightarrow 4x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\)

\(\Leftrightarrow \left( {x - 1} \right)\left( {4x + 1} \right) = 0\)

\( \Leftrightarrow \left[ \begin{gathered}
x - 1 = 0 \hfill \\
4x + 1 = 0 \hfill \\ 
\end{gathered} \right.\)

\( \Leftrightarrow \left[ \begin{gathered}
x = 1 \hfill \\
4x = - 1 \hfill \\ 
\end{gathered} \right.\)

\(\Leftrightarrow \left[ {\matrix{{x = 1}\text{( loại)} \cr {x = - \dfrac{1}{4}}\text{(thỏa mãn)}\cr} }\right.\)

Vậy phương trình có nghiệm duy nhất \(x =  - \dfrac{1}{4}\)

LG b.

\(\dfrac{3}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{2}{{\left( {x - 3} \right)\left( {x - 1} \right)}} \)\(\,= \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Giải chi tiết:

\(\dfrac{3}{{\left( {x - 1} \right)\left( {x - 2} \right)}} + \dfrac{2}{{\left( {x - 3} \right)\left( {x - 1} \right)}} \)\(\,= \dfrac{1}{{\left( {x - 2} \right)\left( {x - 3} \right)}}\)

ĐKXĐ: \(x ≠ 1, x ≠ 2, x ≠ 3\)

MTC: \((x-1)(x-2)(x-3)\)

\( \Rightarrow 3\left( {x - 3} \right) + 2\left( {x - 2} \right) = x - 1\)

\(\Leftrightarrow 3x - 9 + 2x - 4 = x - 1\)

\( \Leftrightarrow 5x - 13 = x - 1\)

\( \Leftrightarrow 5x - x =  - 1 + 13\)

\(⇔ 4x = 12\)

\( \Leftrightarrow x = 12:4\)

\(⇔ x = 3\) (không thỏa mãn ĐKXĐ)

Vậy phương trình vô nghiệm.

LG c.

\(1 + \dfrac{1}{{x + 2}} = \dfrac{{12}}{{8 + {x^3}}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Giải chi tiết:

\(1 + \dfrac{1}{{x + 2}} = \dfrac{{12}}{{8 + {x^3}}}\)

Ta có:  \(8 + {x^3} \ne 0\)\(\Leftrightarrow x^3  ≠ -8 ⇔ x ≠ -2\)

ĐKXĐ: \(x ≠ -2\)

MTC: \(8 + {x^3}=(x+2)(x^2-2x+4)\)

\( \Leftrightarrow \dfrac{{8 + {x^3}}}{{8 + {x^3}}} + \dfrac{{{x^2} - 2x + 4}}{{8 + {x^3}}} = \dfrac{{12}}{{8 + {x^3}}}\)

\( \Rightarrow {x^3} + 8 + {x^2} - 2x + 4 = 12 \)

\( \Leftrightarrow {x^3} + {x^2} - 2x = 12 - 8 - 4\)

\(\Leftrightarrow {x^3} + {x^2} - 2x = 0\)

\(\Leftrightarrow x\left( {{x^2} + x - 2} \right) = 0\)

\(\Leftrightarrow x\left[ {{x^2} + 2x - x - 2} \right] = 0\)

⇔\(x[ x(x+2) - (x+2) ] = 0\)

⇔ \(x(x + 2)(x - 1) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 2 = 0\\
x - 1 = 0
\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}
x = 0\left( \text{ thỏa mãn} \right)\\
x = - 2\left( \text{ loại} \right)\\
x = 1\left( \text{ thỏa mãn} \right)
\end{array} \right.\)

Vậy phương trình có tập nghiệm là \(S = \left\{ {0;1} \right\}\).

LG d.

\(\dfrac{{13}}{{\left( {x - 3} \right)\left( {2x + 7} \right)}} + \dfrac{1}{{2x + 7}}\)\(\, = \dfrac{6}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)

Phương pháp giải:

Bước 1: Tìm điều kiện xác định.

Bước 2: Qui đồng khử mẫu.

Bước 3: Giải phương trình bằng cách chuyển vế đưa về dạng phương trình tích.

*) Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow A(x) = 0\) hoặc \(B(x) =0\)

Giải chi tiết:

\(\dfrac{{13}}{{\left( {x - 3} \right)\left( {2x + 7} \right)}} + \dfrac{1}{{2x + 7}} \)\(\,= \dfrac{6}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\)

ĐKXĐ: \(x \ne 3,x \ne  - 3,x \ne  - \dfrac{7}{2}\)

MTC: \({\left( {x - 3} \right)\left( {x + 3} \right)}\left( {2x + 7} \right)\)

\( \Rightarrow 13\left( {x + 3} \right) + \left( {x - 3} \right)\left( {x + 3} \right) \)\(= 6\left( {2x + 7} \right) \)

\(\Leftrightarrow 13x + 39 + {x^2} - 9 = 12x + 42\)

\(\Leftrightarrow {x^2} + 13x + 30 = 12x + 42\)

\( \Leftrightarrow {x^2} + 13x + 30 - 12x - 42 = 0\)

\(\Leftrightarrow {x^2} + x - 12 = 0\)

\(\Leftrightarrow {x^2} + 4x - 3x - 12 = 0\)

\(\Leftrightarrow x\left( {x + 4} \right) - 3\left( {x + 4} \right) = 0\)

\(\Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x - 3 = 0\\
x + 4 = 0
\end{array} \right. \)

\(\Leftrightarrow \left[ \begin{array}{l}
x = 3\left( \text{không thỏa mãn} \right)\\
x = - 4\left( \text{thỏa mãn} \right)
\end{array} \right.\)

Vậy phương trình có tập nghiệm là \(S = \left\{-4 \right\}\). 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 264 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài