Bài 31 trang 23 SGK Toán 8 tập 2

Bình chọn:
3.7 trên 154 phiếu

Giải bài 31 trang 23 SGK Toán 8 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) \({1 \over {x - 1}} - {{3{x^2}} \over {{x^3} - 1}} = {{2x} \over {{x^2} + x + 1}}\)

b) \({3 \over {\left( {x - 1} \right)\left( {x - 2} \right)}} + {2 \over {\left( {x - 3} \right)\left( {x - 1} \right)}} = {1 \over {\left( {x - 2} \right)\left( {x - 3} \right)}}\)

c) \(1 + {1 \over {x + 2}} = {{12} \over {8 + {x^3}}}\)

d) \({{13} \over {\left( {x - 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)

Phương pháp giải - Xem chi tiết

- Tìm điều kiện xác định.

- Qui đồng khử mẫu.

- Giải phương trình bằng cách đưa về dạng phương trình tích.

Lời giải chi tiết

a) \({1 \over {x - 1}} - {{3{x^2}} \over {{x^3} - 1}} = {{2x} \over {{x^2} + x + 1}}\)

Ta có: \({x^3} - 1 = \left( {x - 1} \right)\left( {{x^2} + x + 1} \right)\)

\(= \left( {x - 1} \right)\left[ {{{\left( {x + {1 \over 2}} \right)}^2} + {3 \over 4}} \right]\) cho nên x3 – 1 ≠ 0 khi x – 1 ≠ 0⇔ x ≠ 1

Vậy ĐKXĐ:  x ≠ 1

MTC: x3 – 1

\( \Leftrightarrow {{{x^2} + x + 1} \over {{x^3} - 1}} - {{3{x^2}} \over {{x^3} - 1}} = {{2x\left( {x - 1} \right)} \over {{x^3} - 1}}\)

\(\Rightarrow {x^2} + x + 1 - 3{x^2} = 2x\left( {x - 1} \right) \)

\(\Leftrightarrow  - 2{x^2} + x + 1 = 2{x^2} - 2x\)

\(\Leftrightarrow 4{x^2} - 3x - 1 = 0\)

\(\Leftrightarrow 4{x^2} - 4x+x - 1 = 0\)

\(\Leftrightarrow 4x\left( {x - 1} \right) + \left( {x - 1} \right) = 0\)

\(\Leftrightarrow \left( {x - 1} \right)\left( {4x + 1} \right) = 0\)

\(\Leftrightarrow \left[ {\matrix{{x = 1} \cr {x = - {1 \over 4}} \cr} }\right.\)

\(x = 1\) không thỏa ĐKXĐ.

Vậy phương trình có nghiệm duy nhất \(x =  - {1 \over 4}\)

b) \({3 \over {\left( {x - 1} \right)\left( {x - 2} \right)}} + {2 \over {\left( {x - 3} \right)\left( {x - 1} \right)}} = {1 \over {\left( {x - 2} \right)\left( {x - 3} \right)}}\)

ĐKXĐ: x ≠ 1, x ≠ 2, x ≠ 3

MTC: \((x-1)(x-2)(x-3)\)

\( \Rightarrow 3\left( {x - 3} \right) + 2\left( {x - 2} \right) = x - 1\)

\(\Leftrightarrow 3x - 9 + 2x - 4 = x - 1\)

\( \Leftrightarrow 5x - 13 = x - 1\)

⇔ \(4x = 12\)

⇔ \(x = 3\) (ktm)

Vậy phương trình vô nghiệm.

c) \(1 + {1 \over {x + 2}} = {{12} \over {8 + {x^3}}}\)

Ta có: \(8 + {x^3} = \left( {x + 2} \right)\left( {{x^2} - 2x + 4} \right)\)

\( = \left( {x + 2} \right)\left[ {{{\left( {x - 1} \right)}^2} + 3} \right]\)

Do đó:  8 + x3 ≠ 0 khi x + 2 ≠ 0 ⇔ x ≠ -2

Suy ra ĐKXĐ: x ≠ -2

MTC: 8 + x3 

\(\Leftrightarrow {{8 + {x^3}} \over {8 + {x^3}}} + {{{x^2} - 2x + 4} \over {8 + {x^3}}} = {{12} \over {8 + {x^3}}}\)

\( \Rightarrow {x^3} + 8 + {x^2} - 2x + 4 = 12 \)

\(\Leftrightarrow {x^3} + {x^2} - 2x = 0\)

\(\Leftrightarrow x\left( {{x^2} + x - 2} \right) = 0\)

\(\Leftrightarrow x\left[ {{x^2} + 2x - x - 2} \right] = 0\)

⇔\(x[ x(x+2) - (x+2) ] = 0\)

⇔ \(x(x + 2)(x – 1) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x = 0\\
x + 2 = 0\\
x - 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 0\left( {tm} \right)\\
x = - 2\left( {ktm} \right)\\
x = 1\left( {tm} \right)
\end{array} \right.\)

Vậy phương trình có tập nghiệm là \(S = \left\{ {0;1} \right\}\).

d) \({{13} \over {\left( {x - 3} \right)\left( {2x + 7} \right)}} + {1 \over {2x + 7}} = {6 \over {\left( {x - 3} \right)\left( {x + 3} \right)}}\)

ĐKXĐ: \(x \ne 3,x \ne  - 3,x \ne  - {7 \over 2}\)

MTC: \({\left( {x - 3} \right)\left( {x + 3} \right)}\left( {2x + 7} \right)\)

\( \Rightarrow 13\left( {x + 3} \right) + \left( {x - 3} \right)\left( {x + 3} \right) \)\(= 6\left( {2x + 7} \right) \)

\(\Leftrightarrow 13x + 39 + {x^2} - 9 = 12x + 42\)

\(\Leftrightarrow {x^2} + x - 12 = 0\)

\(\Leftrightarrow {x^2} + 4x - 3x - 12 = 0\)

\(\Leftrightarrow x\left( {x + 4} \right) - 3\left( {x + 4} \right) = 0\)

\(\Leftrightarrow \left( {x - 3} \right)\left( {x + 4} \right) = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}
x - 3 = 0\\
x + 4 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 3\left( {ktm} \right)\\
x = - 4\left( {tm} \right)
\end{array} \right.\)

Vậy phương trình có nghiệm duy nhất \(x = -4\).

Loigiaihay.com

 

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan