Bài 26 trang 119 SGK Toán 9 tập 2

Bình chọn:
3.1 trên 20 phiếu

Giải bài 26 trang 119 SGK Toán 9 tập 2. Hãy điền đầy đủ vào các ô trống cho ở bảng sau (đơn vị độ dài: cm)

Đề bài

Hãy điền đầy đủ vào các ô trống cho ở bảng sau (đơn vị độ dài: cm):

          

Phương pháp giải - Xem chi tiết

Cho hình nón có chiều cao \(h,\) bán kính đáy \(r\) và đường sinh \(l.\) Khi đó:

+) Đường kính đáy: \(d=2r.\)

+) Thể tích hình nón: \(V=\dfrac{1}{3} \pi r^2h.\)

+) Mối quan hệ \(l^2=h^2+r^2.\)

Lời giải chi tiết

+ Dòng thứ nhất: Khi \(r = 5cm;h = 12cm\) ta có

- Đường kính \(d = 2r = 2.5 = 10cm\)

- Đường sinh \(l = \sqrt {{r^2} + {h^2}}  = \sqrt {{5^2} + {{12}^2}}  = 13\,cm\)

- Thể tích  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.5^2}.12 = 100\pi=314 \left( {c{m^3}} \right)\)

+ Dòng thứ hai:  Khi \(d = 16cm;h = 15cm\) ta có

- Bán kính \(r = \dfrac{d}{2} = \dfrac{{16}}{2} = 8cm\)

- Đường sinh \(l = \sqrt {{r^2} + {h^2}}  = \sqrt {{8^2} + {{15}^2}}  = 17\,cm\)

- Thể tích  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.8^2}.15 = 320\pi =1004,8\left( {c{m^3}} \right)\)

+ Dòng thứ ba: Khi \(r = 7cm;l = 25cm\) ta có

- Đường kính \(d = 2r = 2.7 = 14cm\)

- Vì \({l^2} = {h^2} + {r^2} \Rightarrow h = \sqrt {{l^2} - {r^2}}  = \sqrt {{{25}^2} - {7^2}}  = 24cm\)

- Thể tích  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.7^2}.24 = 392\pi \approx  1230,9\left( {c{m^3}} \right)\) 

+ Dòng thứ tư: Khi \(d = 40cm;l = 29cm\) ta có

- Đường kính \(r = \dfrac{d}{2} = \dfrac{{40}}{2} = 20cm\)

- Vì \({l^2} = {h^2} + {r^2} \Rightarrow h = \sqrt {{l^2} - {r^2}}  = \sqrt {{{29}^2} - {{20}^2}}  = 21cm\)

- Thể tích  \(V = \dfrac{1}{3}\pi {r^2}h = \dfrac{1}{3}\pi {.20^2}.21 = 2800\pi =8792 \left( {c{m^3}} \right)\)

Ta được bảng sau:

 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com