Bài 23 trang 119 SGK Toán 9 tập 2


Giải bài 23 trang 119 SGK Toán 9 tập 2. Viết công thức tính nửa góc ở đỉnh của một hình nón (góc a của tam giác vuông AOS- hình 99)

Đề bài

Viết công thức tính nửa góc ở đỉnh của một hình nón (góc \(\alpha\) của tam giác vuông \(AOS\)- hình 99) sao cho diện tích khai triển mặt nón bằng một phần tư diện tích hình tròn (bán kính \(SA\)).

                 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Diện tích hình quạt có số đo \(n^0\) của đường tròn bán kính \(R\) là: \(S=\dfrac{\pi R^2 n}{360}.\)

+) Diện tích xung quanh của hình nón bán kính đáy \(R\) và đường sinh \(l\) là: \(S_{xq}=\pi Rl.\) 

Lời giải chi tiết

Diện tích hình quạt : 

\(S_{quạt} = \dfrac{\pi r^2 n^o}{360^o}= \dfrac{\pi.l^2.90}{360}=\dfrac{\pi.l^2}4.\)

Diện tích xung quanh của hình nón: \({S_{xq}} = \pi rl\)

Theo đầu bài ta có: \({S_{xq}} = S_{quạt} \Rightarrow πrl= \dfrac{\pi.l^2}4.\)

Vậy \(l = 4r.\) 

Suy ra \(\sin \alpha =\dfrac {OA}{SA}= \dfrac{r}l = \dfrac {1}4\) (vì \(l=4r\).)

 Vậy \(\alpha= {14^0}28'.\) 

loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.4 trên 17 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài