Bài 20 trang 118 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 20 phiếu

Giải bài 20 trang 118 SGK Toán 9 tập 2. Hãy điền đủ vào các ô trống ở bảng sau (xem hình 96)

Đề bài

Hãy điền đủ vào các ô trống ở bảng sau (xem hình 96)

                            

Phương pháp giải - Xem chi tiết

Cho hình nón có chiều cao \(h,\) bán kính đáy \(r\) và đường sinh \(l.\) Khi đó:

+) Đường kính đáy: \(d=2r.\)

+) Thể tích hình nón: \(V=\dfrac{1}{3} \pi r^2h.\)

+) Mối quan hệ \(l^2=h^2+r^2.\)

Lời giải chi tiết

 

+ Dòng thứ nhất:

 \(d = 2r = 1.10 = 20(cm)\)

 \(l\) = \(\sqrt{h^2 + r^2 }= \sqrt{10^2 + 10^2}= 10\sqrt{2}\) (cm)

\(V\) = \(\dfrac{1}{3}\pi r^2h = \dfrac{1}{3}. 10^2. 10. \pi= 10^3. \pi.\dfrac{1}3\)  (\(cm^3\))

+ Dòng thứ hai: \(r\)= \(\dfrac{d}{2}= 5 (cm)\)

\(l\) = \(\sqrt{h^2 + r^2}= \sqrt{10^2 + 5^2}= 5\sqrt{5}\) (cm)

\(V\) =  \(\frac{1}{3}\pi r^2h = \dfrac{1}{3}. 5^2. 10. \pi= 250. \pi.\dfrac{1}3\) (cm3

+ Dòng thứ ba: Khi \(h = 10cm;V = 1000\,c{m^3}\) 

Ta có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow {r^2} = \dfrac{{3V}}{{\pi h}} = \dfrac{{3.1000}}{{\pi .10}} = \dfrac{{300}}{\pi }\, \Rightarrow r = 10\sqrt {\dfrac{3}{\pi }} \,cm\)

- Đường kính đáy \(d = 2r = 20\sqrt {\dfrac{3}{\pi }} \,cm\)

- Đường sinh \(l = \sqrt {{h^2} + {r^2}}  = \sqrt {100 + \dfrac{{300}}{\pi }}  = 10\sqrt {\dfrac{3}{\pi } + 1}  \)

+ Dòng thứ tư : Khi \(r = 10cm;V = 1000\,c{m^3}\)

Ta có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow h = \dfrac{{3V}}{{\pi {r^2}}} = \dfrac{{3.1000}}{{\pi {{.10}^2}}} = \dfrac{{30}}{\pi }cm\)

- Đường kính đáy \(d = 2r = 20cm\)

- Đường sinh \(l = \sqrt {{h^2} + {r^2}}  = \sqrt {\dfrac{{900}}{\pi } + 100}  = 10\sqrt {\dfrac{9}{{{\pi ^2}}} + 1} \)

+ Dòng thứ 5: Khi \(d = 10cm;V = 1000c{m^3}\) ta có \(r = \dfrac{d}{2} = 5cm\) 

- Lại có \(V = \dfrac{1}{3}\pi {r^2}h \Leftrightarrow h = \dfrac{{3V}}{{\pi {r^2}}} = \dfrac{{3.1000}}{{\pi {{.5}^2}}} = \dfrac{{120}}{\pi }cm\)

- Đường sinh \(l = \sqrt {{r^2} + {h^2}}  = \sqrt {{5^2} + {{\left( {\dfrac{{120}}{\pi }} \right)}^2}}  \) 

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com