Bài 2 trang 168 Tài liệu dạy – học Toán 7 tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài tập Cho hình 16, biết ED = EF ; EI là tia phân giác của

Đề bài

Cho hình 16, biết ED = EF ; EI là tia phân giác của \(\widehat {DEF}.\)

Chứng minh rằng :

a) \(\Delta EID = \Delta EIF.\)

b) \(\Delta DIF\) cân.

 

Lời giải chi tiết

a)Xét tam giác EID và EIF ta có:

ED = EF (gt)

\(\widehat {IED} = \widehat {EIF}\)  (EI là tia phân giác của góc DEF)

EI là cạnh chung.

Do đó: \(\Delta EID = \Delta EIF(c.g.c).\)

b) \(\Delta EID = \Delta EIF\)  (chứng minh câu a) => ID = IF. Do đó: tam giác DIF cân tại I.

Loigiaihay.com

Các bài liên quan: - Bài tập - Chủ đề 4: Tam giác cân. Định lý Pythagore