Bài 14 trang 13 SGK Toán 8 tập 2>
Số nào trong ba số -1; 2 và -3 nghiệm đúng mỗi phương trình sau
Đề bài
Số nào trong ba số \(-1; 2\) và \(-3 \) nghiệm đúng mỗi phương trình sau:
\(\left| x \right| = x\;\;\;\;\;\;\;\left( 1 \right)\)
\({x^2} + 5x + 6 = 0\;\;\;\;\;\;\left( 2 \right)\)
\(\dfrac{6}{{1 - x}} = x + 4\;\;\;\;\;\;\;\;\left( 3 \right)\)
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
Thay các giá trị vào hai vế của từng phương trình, nếu kết quả vế trái bằng vế phải thì đó là nghiệm của phương trình.
Lời giải chi tiết
*) Xét phương trình: \(|x|=x\;\;\;\;\;(1)\)
- Thay \(x=-1\) và hai vế của phương trình (1) ta được:
\(\left. \matrix{
VT = | - 1| = 1 \hfill \cr
VP = - 1 \hfill \cr} \right\} \Rightarrow VT \ne VP\)
Vậy \(x=-1\) không là nghiệm của phương trình (1).
- Thay \(x=2\) và hai vế của phương trình (1) ta được:
\(\left. \matrix{
VT = |2| = 2 \hfill \cr
VP = 2 \hfill \cr} \right\} \Rightarrow VT = VP\)
Vậy \(x=2\) là nghiệm của phương trình (1).
- Thay \(x= -3\) và hai vế của phương trình (1) ta được:
\(\left. \matrix{
VT = | - 3| = 3 \hfill \cr
VP = - 3 \hfill \cr} \right\} \Rightarrow VT \ne VP\)
Vậy \(x=-3\) không là nghiệm của phương trình (1).
*) Xét phương trình \({x^2} + 5x + 6 = 0\;\;\;\;\;\;\left( 2 \right)\)
- Thay \(x=-1\) vào hai vế của phương trình (2) ta được:
\(\left. \matrix{
VT = {\left( { - 1} \right)^2} + 5.\left( { - 1} \right) + 6 = 2 \hfill \cr
VP = 0 \hfill \cr} \right\} \)\(\,\Rightarrow VT \ne VP\)
Vậy \(x=-1\) không là nghiệm của phương trình (2).
- Thay \(x=2\) vào hai vế của phương trình (2) ta được:
\(\left. \matrix{
VT = {2^2} + 5.2 + 6 = 20 \hfill \cr
VP = 0 \hfill \cr} \right\}\)\(\, \Rightarrow VT \ne VP\)
Vậy \(x=2\) không là nghiệm của phương trình (2).
- Thay \(x=-3\) vào hai vế của phương trình (2) ta được:
\(\left. \matrix{
VT = {\left( { - 3} \right)^2} + 5.\left( { - 3} \right) + 6 = 0 \hfill \cr
VP = 0 \hfill \cr} \right\}\)\(\, \Rightarrow VT = VP\)
Vậy \(x=-3\) là nghiệm của phương trình (2).
*) Xét \(\dfrac{6}{{1 - x}} = x + 4\;\;\;\;\;\;\;\;\left( 3 \right)\)
- Thay \(x=-1\) vào hai vế của phương trình (3) ta được:
\(\left. \matrix{
VT =\dfrac{6}{{1 - ( - 1)}} = \dfrac{6}{2} = 3 \hfill \cr
VP = ( - 1) + 4 = 3 \hfill \cr} \right\} \)\(\,\Rightarrow VT = VP\)
Vậy \(x=-1\) là nghiệm của phương trình (3)
- Thay \(x=2\) vào hai vế của phương trình (3) ta được:
\(\left. \matrix{
VT =\dfrac{6}{{1 - 2}} = \dfrac{6}{{ - 1}} = - 6 \hfill \cr
VP = 2 + 4 = 6 \hfill \cr} \right\}\)\(\, \Rightarrow VT \ne VP\)
Vậy \(x=2\) không là nghiệm của phương trình (3).
- Thay \(x=-3\) vào hai vế của phương trình (3) ta được:
\(\left. \matrix{
VT = \dfrac{6}{{1 - ( - 3)}} = \dfrac{6}{4} = \dfrac{3}{2} \hfill \cr
VP = ( - 3) + 4 = 1 \hfill \cr} \right\}\)\(\, \Rightarrow VT \ne VP\)
Vậy \(x=-3\) không là nghiệm của phương trình (3).
(Với VT là vế trái, VP là vế phải)
Loigiaihay.com
- Bài 15 trang 13 SGK Toán 8 tập 2
- Bài 16 trang 13 SGK Toán 8 tập 2
- Bài 17 trang 14 SGK Toán 8 tập 2
- Bài 18 trang 14 SGK Toán 8 tập 2
- Bài 19 trang 14 SGK Toán 8 tập 2
>> Xem thêm