Bài 11 trang 13 SGK Toán 8 tập 2

Bình chọn:
4.2 trên 191 phiếu

Giải bài 11 trang 13 SGK Toán 8 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) 3x - 2 = 2x - 3;                                     b) 3 - 4u + 24 + 6u = u + 27 + 3u;

c) 5 - (x - 6) = 4(3 - 2x);                            d) -6(1,5 - 2x) = 3(-15 + 2x);

e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7;        f) \( \frac{3}{2}(x -\frac{5}{4})-\frac{5}{8}\) = x

Phương pháp giải - Xem chi tiết

Áp dụng qui tắc chuyển vế và qui tắc bỏ ngoặc.

Lời giải chi tiết

 a) 3x - 2 = 2x - 3

⇔ 3x - 2x = -3 + 2

⇔ x          = -1

Vậy phương trình có nghiệm duy nhất x = -1.

b) 3 - 4u + 24 + 6u = u + 27 + 3u

⇔ 2u + 27           = 4u + 27

⇔ 2u - 4u            = 27 - 27

⇔ -2u                  = 0

⇔ u                     = 0

Vậy phương trình có nghiệm duy nhất u = 0.

c) 5 - (x - 6) = 4(3 - 2x)

⇔ 5 - x + 6 = 12 - 8x

⇔ -x + 11   = 12 - 8x

⇔ -x + 8x   = 12 - 11

⇔ 7x          = 1

⇔ x            = \( \frac{1}{7}\)

Vậy phương trình có nghiệm duy nhất x = \( \frac{1}{7}\).

d) -6(1,5 - 2x) = 3(-15 + 2x)

⇔ -9 + 12x      = -45 + 6x

⇔ 12x - 6x      = -45 + 9

⇔ 6x               = -36

⇔ x                 = -6

Vậy phương trình có nghiệm duy nhất x = -6

e) 0,1 - 2(0,5t - 0,1) = 2(t - 2,5) - 0,7

⇔ 0,1 - t + 0,2         = 2t - 5 - 0,7

⇔ -t + 0,3                = 2t - 5,7

⇔ -t - 2t                   = -5,7 - 0,3

⇔ -3t                       = -6

⇔ t                          = 2

Vậy phương trình có nghiệm duy nhất t = 2

f) \( \frac{3}{2}(x -\frac{5}{4})-\frac{5}{8}\) = x 

⇔ \( \frac{3}{2}\)x - \( \frac{15}{8}\) - \( \frac{5}{8}\)    = x

⇔ \( \frac{3}{2}\)x - x           = \( \frac{15}{8}\) + \( \frac{5}{8}\)

⇔ \( \frac{1}{2}\)x                = \( \frac{20}{8}\)

⇔ x                  = \( \frac{20}{8}\) : \( \frac{1}{2}\)

⇔ x                  = 5

Vậy phương trình có nghiệm duy nhất x = 5

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan