Bài 13 trang 40 SGK Toán 8 tập 1


Áp dụng quy tắc đổi dấu rồi rút gọn phân thức:

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Áp dụng quy tắc đổi dấu rồi rút gọn phân thức:

LG a.

\(\dfrac{{45x\left( {3 - x} \right)}}{{15x{{\left( {x - 3} \right)}^3}}}\)

Phương pháp giải:

- Áp dụng quy tắc đổi dấu.

- Phân tích tử và mẫu thành nhân tử để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\eqalign{
& {{45x\left( {3 - x} \right)} \over {15x{{\left( {x - 3} \right)}^3}}} = {{3.15x\left( {3 - x} \right)} \over {15x{{\left( {x - 3} \right)}^3}}} \cr 
& = {{3\left( {3 - x} \right)} \over {{{\left( {x - 3} \right)}^3}}} = {{ - 3\left( {x - 3} \right)} \over {{{\left( {x - 3} \right)}^3}}}\cr& = {{ - 3.\left( {x - 3} \right)} \over {{{\left( {x - 3} \right)}^2}.(x-3)}}\cr& = {{ - 3} \over {{{\left( {x - 3} \right)}^2}}} \cr} \)

LG b.

\(\dfrac{{{y^2} - {x^2}}}{{{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}}\)

Phương pháp giải:

- Áp dụng quy tắc đổi dấu.

- Phân tích tử và mẫu thành nhân tử để tìm nhân tử chung.

- Chia cả tử và mẫu cho nhân tử chung giống nhau.

Lời giải chi tiết:

\(\eqalign{
& {{{y^2} - {x^2}} \over {{x^3} - 3{x^2}y + 3x{y^2} - {y^3}}} \cr 
& = {{\left( {y + x} \right)\left( {y - x} \right)} \over {{{\left( {x - y} \right)}^3}}} \cr 
& = {{ - \left( {x + y} \right)\left( {x - y} \right)} \over {{{\left( {x - y} \right)}^3}}} \,\text{(do}\,\,y-x=-(x-y))\cr 
& = {{ - \left( {x + y} \right)} \over {{{\left( {x - y} \right)}^2}}} \cr} \)

Loigiaihay.com


Bình chọn:
4.4 trên 146 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí