Trả lời phần câu hỏi ôn tập chương 1: Căn bậc hai, căn bậc ba trang 39 SGK toán 9 tập 1


Trả lời phần câu hỏi ôn tập chương 1: Căn bậc hai, căn bậc ba trang 39 SGK toán 9 tập 1. Nêu điều kiện để x là căn bậc hai số học của số a không âm...

Lựa chọn câu để xem lời giải nhanh hơn

Câu 1

Nêu điều kiện để x là căn bậc hai số học của số a không âm. Cho ví dụ.

Lời giải chi tiết:

Để \(x\) là căn bậc hai số học của số \(a\) không âm thì \(x ≥ 0\) và \(x^2 = a.\) 

Ví dụ: số 2 là căn bậc hai số học của 4 vì \(2 > 0\) và \(2^2 = 4.\) 

Câu 2

Chứng minh \(\sqrt {a^2} = |a|\) với mọi số a.

Phương pháp giải:

Nếu \(x ≥ 0\) và \(x^2 = a\) thì \(x\) là căn bậc hai số học của số \(a\) không âm. 

Lời giải chi tiết:

Ta xét hai trường hợp:

+) Nếu \(a > 0 \Rightarrow \left| a \right| = a \Rightarrow {\left| a \right|^2} = a\)

+) Nếu \(a < 0 \Rightarrow \left| a \right| =  - a \Rightarrow {\left| a \right|^2} = {\left( { - a} \right)^2} = {a^2}\)

Hay ta luôn có \({\left( {\left| a \right|} \right)^2} = {a^2}\left( 1 \right)\) mà \(\left| a \right| \ge 0\) với mọi \(a\)  (2)

Từ (1) và (2) suy ra \(\left| a \right|\) là căn bậc hai số học của \({a^2}\) hay \(\sqrt {{a^2}}  = \left| a \right|\)

Câu 3

Biểu thức A phải thỏa mãn điều kiện gì để \(\sqrt A \) xác định? 

Lời giải chi tiết:

Ta có: \(\sqrt A \) xác định khi \(A \ge 0\) hay nói cách khác : điều kiện xác định của căn bậc hai là biểu thức lấy căn không âm. 

Câu 4

Phát biểu và chứng minh định lí về mối liên hệ giữa phép nhân và phép khai phương. Cho ví dụ. 

Phương pháp giải:

Nếu \(x ≥ 0\) và \(x^2 = a\) thì \(x\) là căn bậc hai số học của số \(a\) không âm. 

Lời giải chi tiết:

Định lí: Nếu \(a \ge 0\) và \(b \ge 0\) thì \(\sqrt {ab}  = \sqrt a .\sqrt b \)

Chứng minh:  Vì \(a \ge 0,b \ge 0 \Rightarrow ab \ge 0,\) do đó \(\sqrt a ,\sqrt b ,\sqrt {ab} \) đều xác định

Ta có: \({\left( {\sqrt a .\sqrt b } \right)^2} = {\left( {\sqrt a } \right)^2}.{\left( {\sqrt b } \right)^2} = a.b\)

Do \(\sqrt a  \ge 0,\sqrt b  \ge 0 \Rightarrow \sqrt a .\sqrt b  \ge 0\)

Vậy \(\sqrt a .\sqrt b \) là căn bậc hai số học của tích \(ab\) 

Hay \(\sqrt a .\sqrt b  = \sqrt {ab} \)

Ví dụ: \(\sqrt {49.36}  = \sqrt {49} .\sqrt {36} \)\( = 7.6 = 42\)

Câu 5

Phát biểu và chứng minh định lí về mối liên hệ giữa phép chia và phép khai phương. Cho ví dụ. 

Phương pháp giải:

Nếu \(x ≥ 0\) và \(x^2 = a\) thì \(x\) là căn bậc hai số học của số \(a\) không âm. 

Lời giải chi tiết:

Định lý: Nếu \(a \ge 0,b > 0\) thì \(\sqrt {\dfrac{a}{b}}  = \dfrac{{\sqrt a }}{{\sqrt b }}\)

Chứng minh:

Do \(a \ge 0,b > 0\) nên \(\dfrac{{\sqrt a }}{{\sqrt b }}\) xác định

Ta có: \({\left( {\dfrac{{\sqrt a }}{{\sqrt b }}} \right)^2} = \dfrac{{{{\left( {\sqrt a } \right)}^2}}}{{{{\left( {\sqrt b } \right)}^2}}} = \dfrac{a}{b}\left( 1 \right)\)

Mặt khác \(\sqrt a  \ge 0,\sqrt b  > 0 \Rightarrow \dfrac{{\sqrt a }}{{\sqrt b }} \ge 0\) (2)

Từ (1) và (2) suy ra \(\dfrac{{\sqrt a }}{{\sqrt b }}\) là căn bậc hai số học của \(\sqrt {\dfrac{a}{b}} \)

Hay \(\sqrt {\dfrac{a}{b}}  = \dfrac{{\sqrt a }}{{\sqrt b }}\) 

Ví dụ: \(\sqrt {\dfrac{{16}}{{81}}}  = \dfrac{{\sqrt {16} }}{{\sqrt {81} }} = \dfrac{4}{9}\); \(\dfrac{{\sqrt {32} }}{{\sqrt 2 }} = \sqrt {\dfrac{{32}}{2}}  = \sqrt {16}  = 4\)

Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài