Bài 70 trang 40 SGK Toán 9 tập 1


Đề bài

 Tìm giá trị các biểu thức sau bằng cách biến đổi, rút gọn thích hợp

\(\displaystyle a)\sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}}\)                            

\(\displaystyle b)\sqrt {3{1 \over {16}}.2{{14} \over {25}}.2{{34} \over {81}}}\)

\(\displaystyle c){{\sqrt {640} .\sqrt {34,3} } \over {\sqrt {567} }}\)                                    

\(d)\sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}}\) 

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

\(\begin{array}{l}
\sqrt {AB}  = \sqrt A .\sqrt B \,\,\left( {A \ge 0,B \ge 0} \right)\\
\sqrt {{A^2}}  = \left| A \right|
\end{array}\) 

Lời giải chi tiết

a) 

\(\eqalign{
& \sqrt {{{25} \over {81}}.{{16} \over {49}}.{{196} \over 9}} \cr
& = \sqrt {{{25} \over {81}}} .\sqrt {{{16} \over {49}}} .\sqrt {{{196} \over 9}} \cr & = \sqrt {{{\left( {\frac{5}{9}} \right)}^2}} .\sqrt {{{\left( {\frac{4}{7}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{3}} \right)}^2}}\cr
& = {5 \over 9}.{4 \over 7}.{{14} \over 3} = {{40} \over {27}} \cr} \)

b) 

\(\eqalign{
& \sqrt {3{1 \over {16}}.2{{14} \over {25}}2{{34} \over {81}}} \cr
& = \sqrt {{{49} \over {16}}.{{64} \over {25}}.{{196} \over {81}}} \cr
& = \sqrt {{{49} \over {16}}} .\sqrt {{{64} \over {25}}} .\sqrt {{{196} \over {81}}} \cr & = \sqrt {{{\left( {\frac{7}{4}} \right)}^2}} .\sqrt {{{\left( {\frac{8}{5}} \right)}^2}} .\sqrt {{{\left( {\frac{{14}}{9}} \right)}^2}}\cr
& = {7 \over 4}.{8 \over 5}.{{14} \over 9} = {{196} \over {45}} \cr} \)

c)

\(\begin{array}{l}
\dfrac{{\sqrt {640} .\sqrt {34,3} }}{{\sqrt {567} }} = \sqrt {\dfrac{{640.34,3}}{{567}}} = \sqrt {\dfrac{{64.343}}{{567}}}\\ = \sqrt {\dfrac{{64.49.7}}{{81.7}}}
 = \sqrt {\dfrac{{64.49}}{{81}}} \\ = \dfrac{{\sqrt {64} .\sqrt {49} }}{{\sqrt {81} }} = \dfrac{{8.7}}{9} = \dfrac{{56}}{9}
\end{array}\)

d) 

\(\eqalign{
& \sqrt {21,6} .\sqrt {810.} \sqrt {{{11}^2} - {5^2}} \cr
& = \sqrt {21,6.810.\left( {{{11}^2} - {5^2}} \right)} \cr
& = \sqrt {216.81.\left( {11 + 5} \right)\left( {11 - 5} \right)} \cr
& = \sqrt {{36.6}{{.9}^2}{{.4}^2}.6}\cr& = \sqrt {{36^2}{{.9}^2}{{.4}^2}} = 36.9.4 = 1296 \cr} \)

Loigiaihay.com


Bình chọn:
4.3 trên 84 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài