Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 1 - Đại số 9

Bình chọn:
4.2 trên 19 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 2 - Chương 1 - Đại số 9

Đề bài

Bài 1. Tìm điều kiện có nghĩa của biểu thức :

a. \(A = {1 \over {\sqrt {x - 3} }}\)

b. \(B = \sqrt {x - 2}  + {1 \over {x - 2}}\)

Bài 2. Chứng minh :

a. \(2\sqrt {2 + \sqrt 3 }  = \sqrt 2  + \sqrt 6 \)

b. \(\sqrt {1 + {{\sqrt 3 } \over 2}}  = {{1 + \sqrt 3 } \over 2}\)

Bài 3. Tính :

a. \(A = \sqrt 2 \left( {\sqrt {21}  + 3} \right).\sqrt {5 - \sqrt {21} } \)

b. \(B = \sqrt 2 \left( {\sqrt 5  - 1} \right).\sqrt {3 + \sqrt 5 } \)

Bài 4. Cho biểu thức \(P = \left( {{1 \over {\sqrt x  + 1}} - {1 \over {x + \sqrt x }}} \right):{{x - \sqrt x  + 1} \over {x\sqrt x  + 1}}\,\)\(\left( {x > 0} \right)\)

a. Rút gọn biểu thức P.

b. Tìm x sao cho \(P < 0\).

Bài 5. Tìm x, biết : \(\left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x\)

Lời giải chi tiết

Bài 1. a. A có nghĩa \( \Leftrightarrow \left\{ {\matrix{   {x - 3 \ne 0}  \cr   {x - 3 \ge 0}  \cr } } \right. \Leftrightarrow x - 3 > 0 \Leftrightarrow x > 3\)

b. B có nghĩa \( \Leftrightarrow \left\{ {\matrix{   {x - 2 \ge 0}  \cr   {x - 2 \ne 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \ge 2}  \cr   {x \ne 2}  \cr  } } \right. \Leftrightarrow x > 2\)

Bài 2. a. Ta có:

\(\eqalign{  & 2\sqrt {2 + \sqrt 3 }  = \sqrt {4\left( {2 + \sqrt 3 } \right)}   \cr  &  = \sqrt {8 + 4\sqrt 3 }  = \sqrt {6 + 2\sqrt {12}  + 2}   \cr  &  = \sqrt {{{\left( {\sqrt 6  + \sqrt 2 } \right)}^2}}  = \left| {\sqrt 6  + \sqrt 2 } \right|  \cr  &  = \sqrt 2  + \sqrt 6 \,\,\left( {đpcm} \right) \cr} \)

b. Ta có:

\(\eqalign{  & \sqrt {1 + {{\sqrt 3 } \over 2}}  = \sqrt {{{2 + \sqrt 3 } \over 2}}   \cr  &  = \sqrt {{{4 + 2\sqrt 3 } \over 4}}  = {{\sqrt {{{\left( {1 + \sqrt 3 } \right)}^2}} } \over {\sqrt 4 }}  \cr  &  = {{1 + \sqrt 3 } \over 2}\,\,\left( {đpcm} \right) \cr} \)

Bài 3. a. Ta có:

\(\eqalign{  A &= \left( {\sqrt {21}  + 3} \right)\sqrt {10 - 2\sqrt {21} }   \cr  &  = \sqrt 3 \left( {\sqrt 7  + \sqrt 3 } \right)\sqrt {{{\left( {\sqrt 7  - \sqrt 3 } \right)}^2}}   \cr  &  = \sqrt 3 .\left( {\sqrt 7  + \sqrt 3 } \right)\left( {\sqrt 7  - \sqrt 3 } \right) \cr&= 4\sqrt 3  \cr} \)

b. Ta có:

\(\eqalign{   B& = \left( {\sqrt 5  - 1} \right)\sqrt {6 + 2\sqrt 5 }   \cr  &  = \left( {\sqrt 5  - 1} \right)\sqrt {{{\left( {\sqrt 5  + 1} \right)}^2}}   \cr  &  = \left( {\sqrt 5  - 1} \right)\left( {\sqrt 5  + 1} \right)  \cr  &  = 5 - 1 = 4 \cr} \)

Bài 4. a. Ta có:

\(\eqalign{  & P = \left[ {{1 \over {\sqrt x  + 1}} - {1 \over {\sqrt x \left( {\sqrt x  + 1} \right)}}} \right]:{{x - \sqrt x  + 1} \over {{{\left( {\sqrt x } \right)}^3} + 1}}  \cr  &  = {{\sqrt x  - 1} \over {\sqrt x \left( {\sqrt x  + 1} \right)}}:{{x - \sqrt x  + 1} \over {\left( {\sqrt x  + 1} \right)\left( {x - \sqrt x  + 1} \right)}}  \cr  &  = {{\sqrt x  - 1} \over {\sqrt x \left( {\sqrt x  + 1} \right)}}.\left( {\sqrt x  + 1} \right) \cr&= {{\sqrt x  - 1} \over {\sqrt x }} \cr} \)

b. Ta có: \(P < 0\) (điều kiện \(x > 0\))

\(\eqalign{  &  \Leftrightarrow {{\sqrt x  - 1} \over {\sqrt x }} < 0\cr& \Leftrightarrow \sqrt x  - 1 < 0\,\,\,\left( {\text{Vì }\,\sqrt x  > 0\,khi\,x > 0} \right)  \cr  &  \Leftrightarrow \sqrt x  < 1 \Leftrightarrow 0 < x < 1 \cr} \)

Bài 5. Điều kiện : \(x ≥ 0\).

Ta có:

\(\eqalign{  & \left( {3 - 2\sqrt x } \right)\left( {2 + 3\sqrt x } \right) = 16 - 6x  \cr  &  \Leftrightarrow 6 + 9\sqrt x  - 4\sqrt x  - 6x = 16 - 6x  \cr  &  \Leftrightarrow 5\sqrt x  = 10  \cr  &  \Leftrightarrow \sqrt x  = 2 \cr} \)

\(\;\;⇔ x = 4\) (thỏa mãn điều kiện)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com