Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Bình chọn:
3.5 trên 51 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 1 - Chương 1 - Đại số 9

Đề bài

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = \sqrt {{{ - 3} \over {3 - x}}} \)

b. \(B = \sqrt {x + {1 \over x}} \)

Bài 2. Tính :

a. \(M = \left( {\sqrt 2  - \sqrt {3 - \sqrt 5 } } \right)\sqrt 2  + \sqrt {20} \)

b. \(N = \left( {{{\sqrt 6  - \sqrt 2 } \over {1 - \sqrt 3 }} - {5 \over {\sqrt 5 }}} \right):{1 \over {\sqrt 5  - \sqrt 2 }}\)

Bài 3. Cho biểu thức : \(P = {{a\sqrt a } \over {\sqrt a  - 1}} + {1 \over {1 - \sqrt a }}\)   (với \(a ≥ 0\) và \(a ≠ 1)\)

a. Rút gọn biểu thức P.

b. Tính giá trị của biểu thức P tại \(a = {9 \over 4}\)

Bài 4. Tìm x, biết :

a. \(\sqrt {4{x^2} - 4x + 1}  = 3\)

b. \(3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1\)

Bài 5. Tìm x, biết : \(\sqrt {1 - 3x}  < 2\)

Lời giải chi tiết

Bài 1.

a. A có nghĩa \( \Leftrightarrow {{ - 3} \over {3 - x}} \ge 0 \Leftrightarrow 3 - x < 0 \Leftrightarrow x > 3\)

b. B có nghĩa \( \Leftrightarrow x + {1 \over x} \ge 0 \Leftrightarrow {{{x^2} + 1} \over x} \ge 0 \Leftrightarrow x > 0\)

(vì \({x^2} \ge 0,\) với mọi \(x ∈ \mathbb R\) nên \({x^2} + 1 \ge 1 > 0,\) với mọi \(x ∈\mathbb R\)).

Bài 2. a. Ta có:

\(\eqalign{   M &= {\left( {\sqrt 2 } \right)^2} - \sqrt 2 .\sqrt {3 - \sqrt 5 }  + \sqrt {20}   \cr  &  = 2 - \sqrt {6 - 2\sqrt 5 }  + \sqrt {20}   \cr  &  = 2 - \sqrt {{{\left( {\sqrt 5  - 1} \right)}^2}}  + \sqrt {4.5}   \cr  &  = 2 - \left( {\sqrt 5  - 1} \right) + 2\sqrt 5  = 3 + \sqrt 5  \cr} \)

b. Ta có:

\(\eqalign{   N &= \left( {{{\sqrt 2 \left( {\sqrt 3  - 1} \right)} \over {1 - \sqrt 3 }} - \sqrt 5 } \right)\left( {\sqrt 5  - \sqrt 2 } \right)  \cr  &  =  - \left( {\sqrt 2  + \sqrt 5 } \right)\left( {\sqrt 5  - \sqrt 2 } \right)  \cr  &  =  - \left( {5 - 2} \right) =  - 3 \cr} \)

Bài 3. a. Ta có:

\(\eqalign{   P &= {{a\sqrt a } \over {\sqrt a  - 1}} - {1 \over {\sqrt a  - 1}} \cr&= {{{{\left( {\sqrt a } \right)}^3} - {1^3}} \over {\sqrt a  - 1}}  \cr  &  = {{\left( {\sqrt a  - 1} \right)\left( {a + \sqrt a  + 1} \right)} \over {\sqrt a  - 1}}  \cr  &  = a + \sqrt a  + 1 \cr} \)

b. Khi \(a = {9 \over 4} \Rightarrow P = {9 \over 4} + \sqrt {{9 \over 4}}  + 1 = {{19} \over 4}\)

Bài 4. a. Ta có:

\(\eqalign{  & \sqrt {4{x^2} - 4x + 1}  = 3\cr& \Leftrightarrow \sqrt {{{\left( {2x - 1} \right)}^2}}  = 3  \cr  &  \Leftrightarrow \left| {2x - 1} \right| = 3\cr& \Leftrightarrow \left[ {\matrix{   {2x - 1 = 3}  \cr   {2x - 1 =  - 3}  \cr  } } \right. \Leftrightarrow \left[ {\matrix{   {x = 2}  \cr   {x =  - 1}  \cr  } } \right. \cr} \)

b. Ta có:

\(\eqalign{  & 3\left( {\sqrt x  + 2} \right) + 5 = 4\sqrt {4x}  + 1  \cr  &  \Leftrightarrow 3\sqrt x  + 6 + 5 = 8\sqrt x  + 1  \cr  &  \Leftrightarrow 5\sqrt x  = 10 \Leftrightarrow \sqrt x  = 2  \cr  &  \Leftrightarrow x = 4 \cr} \)

Bài 5. Ta có:

\(\eqalign{  & \sqrt {1 - 3x}  < 2 \Leftrightarrow \left\{ {\matrix{   {1 - 3x \ge 0}  \cr   {1 - 3x < 4}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \le {1 \over 3}}  \cr   {x >  - 1}  \cr  } } \right. \Leftrightarrow  - 1 < x \le {1 \over 3} \cr} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com