Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9

Bình chọn:
3.9 trên 16 phiếu

Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 3 - Chương 1 - Đại số 9

Đề bài

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(A = {1 \over {1 - \sqrt {x - 1} }}\)

b. \(B = {1 \over {\sqrt {{x^2} - 2x + 1} }}\)

Bài 2. Rút gọn :

a. \(M = \left( {4 + \sqrt 3 } \right).\sqrt {19 - 8\sqrt 3 } \)

b. \(N = {{\sqrt {8 - \sqrt {15} } } \over {\sqrt {30}  - \sqrt 2 }}\)

Bài 3. Rút gọn biểu thức : \(P = \left( {{{8 - x\sqrt x } \over {2 - \sqrt x }} + 2\sqrt x } \right).{\left( {{{2 - \sqrt x } \over {2 + \sqrt x }}} \right)^2}\,\,\,\)\(\left( {x \ge 0;x \ne 4} \right)\)

Bài 4. Tìm x, biết : \(\left( {3 - \sqrt {2x} } \right).\left( {2 - 3\sqrt {2x} } \right) = 6x - 5\,\left( * \right)\)

Bài 5. Tìm giá trị nhỏ nhất của biểu thức : \(P = \sqrt {{x^2} - 2x + 5} \)

Lời giải chi tiết

Bài 1. a. A có nghĩa

\(\eqalign{  & \left\{ {\matrix{   {x - 1 \ge 0}  \cr   {1 - \sqrt {x - 1}  \ne 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \ge 1}  \cr   {\sqrt {x - 1}  \ne 1}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge 1}  \cr   {x - 1 \ne 1}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \ge 1}  \cr   {x \ne 2}  \cr  } } \right. \cr} \)

b. B có nghĩa \( \Leftrightarrow {x^2} - 2x + 1 > 0 \Leftrightarrow {\left( {x - 1} \right)^2} > 0 \)

\(\Leftrightarrow x \ne 1\)

Bài 2. a. Ta có:

\(\eqalign{   M &= \left( {4 + \sqrt 3 } \right)\sqrt {{{\left( {4 - \sqrt 3 } \right)}^2}}   \cr  &  = \left( {4 + \sqrt 3 } \right)\left( {4 - \sqrt 3 } \right)  \cr  &  = 16 - 3 = 13 \cr} \)

b. Ta có:

\(\eqalign{   N &= {{\sqrt {8 - \sqrt {15} } } \over {\sqrt 2 \left( {\sqrt {15}  - 1} \right)}}\cr& = {{\sqrt {2\left( {8 - \sqrt {15} } \right)} } \over {2\left( {\sqrt {15}  - 1} \right)}}  \cr  &  = {{\sqrt {16 - 2\sqrt {15} } .\left( {\sqrt {15}  + 1} \right)} \over {2.14}}  \cr  &  = {{\sqrt {{{\left( {15 - 1} \right)}^2}} .\left( {\sqrt {15}  + 1} \right)} \over {28}}  \cr  &  = {{\left( {\sqrt {15}  - 1} \right)\left( {\sqrt {15}  + 1} \right)} \over {28}} \cr&= {{14} \over {28}} = {1 \over 2} \cr} \)

Bài 3. Ta có:

\(\eqalign{   P& = \left[ {{{\left( {2 - \sqrt x } \right)\left( {4 + 2\sqrt x  + x} \right)} \over {2 - \sqrt x }} + 2\sqrt x } \right].{{{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}}  \cr  &  = \left( {4 + 2\sqrt x  + x + 2\sqrt x } \right).{{{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}}  \cr  &  = {{{{\left( {2 + \sqrt x } \right)}^2}.{{\left( {2 - \sqrt x } \right)}^2}} \over {{{\left( {2 + \sqrt x } \right)}^2}}}  \cr  &  = {\left( {2 - \sqrt x } \right)^2} \cr} \)

Bài 4. Ta có:

\(\eqalign{  & \left( * \right) \Leftrightarrow 6 - 9\sqrt {2x}  - 2\sqrt {2x}  + 6x = 6x - 5  \cr  &  \Leftrightarrow  - 11\sqrt {2x}  =  - 11 \Leftrightarrow \sqrt {2x}  = 1  \cr  &  \Leftrightarrow 2x = 1 \Leftrightarrow x = {1 \over 2} \cr} \)

Bài 5. Ta có:

\(P = \sqrt {{{\left( {x - 1} \right)}^2} + 4}  \ge \sqrt 4  = 2\)  (vì  \({\left( {x - 1} \right)^2} \ge 0\) với mọi x)

Vậy giá trị nhỏ nhất của P bằng 2, đạt được khi \(x – 1 = 0\) hay \(x = 1\).

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay