Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 1 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 6 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Rút gọn :

\(A = \left( {\sqrt 6  + \sqrt {10} } \right).\sqrt {4 - \sqrt {15} } \)

\(B = {{\sqrt 3  + 2} \over {\sqrt 3  - 2}} - {{\sqrt 3  - 2} \over {\sqrt 3  + 2}} + {{8\sqrt 6  - 8\sqrt 3 } \over {\sqrt 2  - 1}}\)

Bài 2. Tính : \(Q = \sqrt {\sqrt 2  + 2\sqrt {\sqrt 2  - 1} } \)\(\, + \sqrt {\sqrt 2  - 2\sqrt {\sqrt 2  - 1} } \)

Bài 3. Tìm x, biết : 

a. \(\left( {2 - \sqrt x } \right)\left( {1 + \sqrt x } \right) =  - x + \sqrt 5 \)

b. \(\sqrt {{x^2} + 2x\sqrt 3  + 3}  = \sqrt 3  + x\) 

Bài 4. Cho \(A = {1 \over {\sqrt x  + \sqrt {x - 1} }} - {1 \over {\sqrt x  - \sqrt {x - 1} }} - {{x\sqrt x  - x} \over {1 - \sqrt x }}\)

a. Rút gọn biểu thức A

b. Tìm giá trị của x để \(A > 0\).

LG bài 1

Phương pháp giải:

Sử dụng \(\sqrt {{A^2}}  = \left| A \right|\) 

Lời giải chi tiết:

\(\eqalign{   A &= \left( {\sqrt 6  + \sqrt {10} } \right).\sqrt {4 - \sqrt {15} } \cr& = \sqrt 2 \left( {\sqrt 3  + \sqrt 5 } \right).\sqrt {4 - \sqrt {15} }   \cr  &  = \left( {\sqrt 3  + \sqrt 5 } \right).\sqrt {8 - 2\sqrt {15} }  \cr&= \left( {\sqrt 3  + \sqrt 5 } \right).\sqrt {{{\left( {\sqrt 3  - \sqrt 5 } \right)}^2}}   \cr  &  = \left( {\sqrt 3  + \sqrt 5 } \right).\left| {\sqrt 3  - \sqrt 5 } \right| \cr&= \left( {\sqrt 3  + \sqrt 5 } \right).\left( {\sqrt 5  - \sqrt 3 } \right)\,\,\left( {\text{Vì }\,\sqrt 3  < \sqrt 5 } \right)  \cr  &  = {\left( {\sqrt 5 } \right)^2} - {\left( {\sqrt 3 } \right)^2} \cr&= 5 - 3 = 2 \cr} \) 

\(\eqalign{   B &= {{\sqrt 3  + 2} \over {\sqrt 3  - 2}} - {{\sqrt 3  - 2} \over {\sqrt 3  + 2}} + {{8\sqrt 6  - 8\sqrt 3 } \over {\sqrt 2  - 1}}  \cr  &  = {{{{\left( {\sqrt 3  + 2} \right)}^2}} \over {\left( {\sqrt 3  - 2} \right)\left( {\sqrt 3  + 2} \right)}} - {{{{\left( {\sqrt 3  - 2} \right)}^2}} \over {\left( {\sqrt 3  - 2} \right)\left( {\sqrt 3  + 2} \right)}} + {{8\sqrt 3 \left( {\sqrt 2  - 1} \right)} \over {\sqrt 2  - 1}}  \cr  &  = {{3 + 4\sqrt 3  + 4 - \left( {3 - 4\sqrt 3  + 4} \right)} \over {{{\left( {\sqrt 3 } \right)}^2} - {2^2}}} + 8\sqrt 3   \cr  &  = {{3 + 4\sqrt 3  + 4 - 3 + 4\sqrt 3  - 4} \over {3 - 4}} + 8\sqrt 3   \cr  &  = {{8\sqrt 3 } \over { - 1}} + 8\sqrt 3  =  - 8\sqrt 3  + 8\sqrt 3  = 0 \cr} \)

LG bài 2

Phương pháp giải:

Biến đổi để sử dụng \(\sqrt {{A^2}}  = \left| A \right|\) 

Lời giải chi tiết:

\(\eqalign{   Q& = \sqrt {\sqrt 2  + 2\sqrt {\sqrt 2  - 1} }  + \sqrt {\sqrt 2  - 2\sqrt {\sqrt 2  - 1} }  \cr  &  = \sqrt {\left( {\sqrt 2  - 1} \right) + 2\sqrt {\sqrt 2  - 1}  + 1}  + \sqrt {\left( {\sqrt 2  - 1} \right) - 2\sqrt {\sqrt 2  - 1}  + 1}   \cr  &  = \sqrt {{{\left( {\sqrt {\sqrt 2  - 1}  + 1} \right)}^2}}  + \sqrt {{{\left( {\sqrt {\sqrt 2  - 1}  - 1} \right)}^2}}   \cr  &  = \left| {\sqrt {\sqrt 2  - 1}  + 1} \right| + \left| {\sqrt {\sqrt 2  - 1}  - 1} \right|  \cr  &  = \sqrt {\sqrt 2  - 1}  + 1 + 1 - \sqrt {\sqrt 2  - 1}  \cr&= 2\,\,\left( {\text{Vì }\,\sqrt {\sqrt 2  - 1}  < 1} \right) \cr} \)

LG bài 3

Phương pháp giải:

Đưa về dạng:

\(\begin{array}{l}
\sqrt {f\left( x \right)} = a\left( {a \ge 0} \right)\\
\Leftrightarrow f\left( x \right) = {a^2}
\end{array}\)

Lời giải chi tiết:

a. Điều kiện: \(x\ge 0\)

\(\eqalign{  & \left( {2 - \sqrt x } \right)\left( {1 + \sqrt x } \right) =  - x + \sqrt 5   \cr  &  \Leftrightarrow 2 + 2\sqrt x  - \sqrt x  - x =  - x + \sqrt 5   \cr  &  \Leftrightarrow \sqrt x  = \sqrt 5  - 2 \Leftrightarrow x = {\left( {\sqrt 5  - 2} \right)^2}  \cr  &  \Leftrightarrow x = 9 - 4\sqrt 5  \ge 0\,\,\left( \text{nhận} \right) \cr} \)

Vậy \(x = 9 - 4\sqrt 5\)

b. 

\(\eqalign{  & \sqrt {{x^2} + 2x\sqrt 3  + 3}  = \sqrt 3  + x  \cr  &  \Leftrightarrow \sqrt {{{\left( {x + \sqrt 3 } \right)}^2}}  = \sqrt 3  + x  \cr  &  \Leftrightarrow \left| {x + \sqrt 3 } \right| = \sqrt 3  + x  \cr  &  \Leftrightarrow x + \sqrt 3  \ge 0 \Leftrightarrow x \ge  - \sqrt 3  \cr} \)

Vậy \(x \ge  - \sqrt 3\)

LG bài 4

Phương pháp giải:

Quy đồng và rút gọn A

Lưu ý \({A^2} > 0 \Leftrightarrow A \ne 0\)

Lời giải chi tiết:

a. Điều kiện để biểu thức A có nghĩa :

\(\eqalign{  & \left\{ {\matrix{   {x \ge 0}  \cr   {x - 1 \ge 0}  \cr   {\sqrt x  - \sqrt {x - 1}  \ne 0}  \cr   {1 - \sqrt x  \ne 0}  \cr  } } \right. \Leftrightarrow x > 1  \cr  & A = {1 \over {\sqrt x  + \sqrt {x - 1} }} - {1 \over {\sqrt x  - \sqrt {x - 1} }} - {{x\sqrt x  - x} \over {1 - \sqrt x }}  \cr  &  = {{\sqrt x  - \sqrt {x - 1} } \over {\left( {\sqrt x  + \sqrt {x - 1} } \right)\left( {\sqrt x  - \sqrt {x - 1} } \right)}} - {{\sqrt x  + \sqrt {x - 1} } \over {\left( {\sqrt x  - \sqrt {x - 1} } \right)\left( {\sqrt x  + \sqrt {x - 1} } \right)}} - {{x\left( {\sqrt x  - 1} \right)} \over {1 - \sqrt x }}  \cr  &  = {{\sqrt x  - \sqrt {x - 1}  - \left( {\sqrt x  + \sqrt {x - 1} } \right)} \over {\left( {\sqrt x  + \sqrt {x - 1} } \right)\left( {\sqrt x  - \sqrt {x - 1} } \right)}} + {{x\left( {\sqrt x  - 1} \right)} \over {\sqrt x  - 1}}  \cr  &  = {{\sqrt x  - \sqrt {x - 1}  - \sqrt x  - \sqrt {x - 1} } \over {x - \left( {x - 1} \right)}} + x  \cr  &  = {{ - 2\sqrt {x - 1} } \over 1} + x =  - 2\sqrt {x - 1}  + x  \cr  &  = {\left( {\sqrt {x - 1}  - 1} \right)^2} \cr} \)

b.  \(A > 0 \Leftrightarrow {\left( {\sqrt {x - 1}  - 1} \right)^2} > 0\)\(\Leftrightarrow   \left\{ {\matrix{   {x > 1}  \cr   {\sqrt {x - 1}  - 1 \ne 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x > 1}  \cr   {x \ne 2}  \cr  } } \right.\)

Vậy để \(A > 0\) thì \(x > 1\) và \(x ≠ 2\).

 Loigiaihay.com


Bình chọn:
4.5 trên 15 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài