Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(\displaystyle A = \sqrt {2 - 4x} \)

b. \(\displaystyle B = \sqrt {{{ - 3} \over {x - 1}}}  + \sqrt {{x^2} + 4} \)

Bài 2. Chứng minh rằng : \(\displaystyle 2 + \sqrt 3 \,\,<\,\,3 + \sqrt 2 \)

Bài 3. a. Rút gọn :  \(\displaystyle P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)\(\displaystyle \left( {x > 0;y > 0;x \ne y} \right)\)

b. Tính P, biết \(\displaystyle x = \sqrt 2  - 1\,\,và\,\,y = \sqrt {9 - 4\sqrt 2 } \)

Bài 4. Tìm x, biết :  

a. \(\displaystyle \sqrt {{x^2} + 3}  = x + 1\)

b. \(\displaystyle \sqrt {{x^2} + 1}  \le x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(\displaystyle P = 5 - \sqrt {{x^2} - 6x + 14} \)

LG bài 1

Phương pháp giải:

Sử dụng: \(\sqrt A \) có nghĩa khi \(A\ge 0\)

Lời giải chi tiết:

a. A có nghĩa \( \Leftrightarrow 2 - 4x \ge 0 \Leftrightarrow 2 \ge 4x \Leftrightarrow x \le {1 \over 2}\)

b. B có nghĩa \( \Leftrightarrow \left\{ {\matrix{   {{{ - 3} \over {x - 1}} \ge 0}  \cr   {{x^2} + 4 \ge 0}  \cr  } } \right.\)\( \Leftrightarrow x - 1 < 0 \Leftrightarrow x < 1\) 

(vì \({x^2} + 4 \ge 0\) luôn đúng với mọi x)

LG bài 2

Phương pháp giải:

Sử dụng: \(0 < a < b \Leftrightarrow {a^2} < {b^2}\)

Lời giải chi tiết:

Ta có: 

\(\eqalign{  & 2 + \sqrt 3  < 3 + \sqrt 2  \Leftrightarrow \sqrt 3  < 1 + \sqrt 2   \cr  &  \Leftrightarrow 3 < 1 + 2\sqrt 2  + 2\cr& \Leftrightarrow 2\sqrt 2  > 0\,\,\left( \text{luôn đúng} \right) \cr} \)

LG bài 3

Phương pháp giải:

Quy đồng và rút gọn P.

Lời giải chi tiết:

a. Ta có:

\(\displaystyle P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)

\(\eqalign{   & = {{\sqrt {xy} \left( {\sqrt x  + \sqrt y } \right)} \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}  \cr  &  = \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right) \cr&= x - y \cr} \)

b. Ta có: \(y = \sqrt {9 - 4\sqrt 2 }  = \sqrt {8 - 2.2\sqrt 2 .1 + 1} \)\( = \sqrt {{{\left( {2\sqrt 2  - 1} \right)}^2}}  \)\(\,= 2\sqrt 2  - 1\) 

Vậy : \(P = \left( {\sqrt 2  - 1} \right) - \left( {2\sqrt 2  - 1} \right) =  - \sqrt 2 \)

LG bài 4

Phương pháp giải:

Sử dụng: 

\(\begin{array}{l}
\sqrt {f\left( x \right)} = g\left( x \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
g\left( x \right) \ge 0\\
f\left( x \right) = {\left( {g\left( x \right)} \right)^2}
\end{array} \right.\\
\sqrt {f\left( x \right)} \le g\left( x \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
f\left( x \right) \ge 0\\
g\left( x \right) \ge 0\\
f\left( x \right) \le {\left( {g\left( x \right)} \right)^2}
\end{array} \right.
\end{array}\)

Lời giải chi tiết:

a. Ta có:

\(\eqalign{  & \sqrt {{x^2} + 3}  = x + 1\cr& \Leftrightarrow \left\{ {\matrix{   {x + 1 \ge 0}  \cr   {{x^2} + 3 = {x^2} + 2x + 1}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 1}  \cr   {x = 1}  \cr  } } \right. \Leftrightarrow x = 1 \cr} \)

b. Ta có: 

\(\eqalign{  & \sqrt {{x^2} + 1}  \le x + 2 \cr&\Leftrightarrow \left\{ {\matrix{   {{x^2} + 1 \ge 0}  \cr   {x + 2 \ge 0}  \cr   {{x^2} + 1 \le {x^2} + 4x + 4}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 2}  \cr   {x \ge  - {3 \over 4}}  \cr  } } \right. \Leftrightarrow x \ge  - {3 \over 4} \cr} \)

LG bài 5

Phương pháp giải:

Sử dụng \(m - \sqrt {{{\left( {x - a} \right)}^2} + b}  \le m - \sqrt b \) với \(a, b\ge 0\)

Lời giải chi tiết:

Ta có: \(\sqrt {{x^2} - 6x + 14}  \)\( = \sqrt {{x^2} - 6x + 9 + 5} \)\(= \sqrt {{{\left( {x - 3} \right)}^2} + 5}  \ge \sqrt 5 \) (vì \({\left( {x - 3} \right)^2} \ge 0\) với mọi x)

\( \Rightarrow  - \sqrt {{x^2} - 6x + 14}  \le  - \sqrt 5\)

\(  \Rightarrow 5 - \sqrt {{x^2} - 6x + 14}  \le 5 - \sqrt 5 \)

Vậy giá trị lớn nhất của P bằng \(5 - \sqrt 5 ;\) đạt được khi \(x - 3 = 0 \Leftrightarrow x = 3\) 

 Loigiaihay.com


Bình chọn:
3.9 trên 17 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 9 - Xem ngay

Tham Gia Group Dành Cho Lớp 9 - Ôn Thi Vào Lớp 10 Miễn Phí