Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9


Giải Đề kiểm tra 45 phút (1 tiết) - Đề số 4 - Chương 1 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm điều kiện để mỗi biểu thức sau có nghĩa :

a. \(\displaystyle A = \sqrt {2 - 4x} \)

b. \(\displaystyle B = \sqrt {{{ - 3} \over {x - 1}}}  + \sqrt {{x^2} + 4} \)

Bài 2. Chứng minh rằng : \(\displaystyle 2 + \sqrt 3 \,\,<\,\,3 + \sqrt 2 \)

Bài 3. a. Rút gọn :  \(\displaystyle P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)\(\displaystyle \left( {x > 0;y > 0;x \ne y} \right)\)

b. Tính P, biết \(\displaystyle x = \sqrt 2  - 1\,\,và\,\,y = \sqrt {9 - 4\sqrt 2 } \)

Bài 4. Tìm x, biết :  

a. \(\displaystyle \sqrt {{x^2} + 3}  = x + 1\)

b. \(\displaystyle \sqrt {{x^2} + 1}  \le x + 2\)

Bài 5. Tìm giá trị lớn nhất của biểu thức : \(\displaystyle P = 5 - \sqrt {{x^2} - 6x + 14} \)

LG bài 1

Phương pháp giải:

Sử dụng: \(\sqrt A \) có nghĩa khi \(A\ge 0\)

Lời giải chi tiết:

a. A có nghĩa \( \Leftrightarrow 2 - 4x \ge 0 \Leftrightarrow 2 \ge 4x \Leftrightarrow x \le {1 \over 2}\)

b. B có nghĩa \( \Leftrightarrow \left\{ {\matrix{   {{{ - 3} \over {x - 1}} \ge 0}  \cr   {{x^2} + 4 \ge 0}  \cr  } } \right.\)\( \Leftrightarrow x - 1 < 0 \Leftrightarrow x < 1\) 

(vì \({x^2} + 4 \ge 0\) luôn đúng với mọi x)

LG bài 2

Phương pháp giải:

Sử dụng: \(0 < a < b \Leftrightarrow {a^2} < {b^2}\)

Lời giải chi tiết:

Ta có: 

\(\eqalign{  & 2 + \sqrt 3  < 3 + \sqrt 2  \Leftrightarrow \sqrt 3  < 1 + \sqrt 2   \cr  &  \Leftrightarrow 3 < 1 + 2\sqrt 2  + 2\cr& \Leftrightarrow 2\sqrt 2  > 0\,\,\left( \text{luôn đúng} \right) \cr} \)

LG bài 3

Phương pháp giải:

Quy đồng và rút gọn P.

Lời giải chi tiết:

a. Ta có:

\(\displaystyle P = {{x\sqrt y  + y\sqrt x } \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}\,\,\,\)

\(\eqalign{   & = {{\sqrt {xy} \left( {\sqrt x  + \sqrt y } \right)} \over {\sqrt {xy} }}:{1 \over {\sqrt x  - \sqrt y }}  \cr  &  = \left( {\sqrt x  + \sqrt y } \right)\left( {\sqrt x  - \sqrt y } \right) \cr&= x - y \cr} \)

b. Ta có: \(y = \sqrt {9 - 4\sqrt 2 }  = \sqrt {8 - 2.2\sqrt 2 .1 + 1} \)\( = \sqrt {{{\left( {2\sqrt 2  - 1} \right)}^2}}  \)\(\,= 2\sqrt 2  - 1\) 

Vậy : \(P = \left( {\sqrt 2  - 1} \right) - \left( {2\sqrt 2  - 1} \right) =  - \sqrt 2 \)

LG bài 4

Phương pháp giải:

Sử dụng: 

\(\begin{array}{l}
\sqrt {f\left( x \right)} = g\left( x \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
g\left( x \right) \ge 0\\
f\left( x \right) = {\left( {g\left( x \right)} \right)^2}
\end{array} \right.\\
\sqrt {f\left( x \right)} \le g\left( x \right)\\
\Leftrightarrow \left\{ \begin{array}{l}
f\left( x \right) \ge 0\\
g\left( x \right) \ge 0\\
f\left( x \right) \le {\left( {g\left( x \right)} \right)^2}
\end{array} \right.
\end{array}\)

Lời giải chi tiết:

a. Ta có:

\(\eqalign{  & \sqrt {{x^2} + 3}  = x + 1\cr& \Leftrightarrow \left\{ {\matrix{   {x + 1 \ge 0}  \cr   {{x^2} + 3 = {x^2} + 2x + 1}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 1}  \cr   {x = 1}  \cr  } } \right. \Leftrightarrow x = 1 \cr} \)

b. Ta có: 

\(\eqalign{  & \sqrt {{x^2} + 1}  \le x + 2 \cr&\Leftrightarrow \left\{ {\matrix{   {{x^2} + 1 \ge 0}  \cr   {x + 2 \ge 0}  \cr   {{x^2} + 1 \le {x^2} + 4x + 4}  \cr  } } \right.  \cr  &  \Leftrightarrow \left\{ {\matrix{   {x \ge  - 2}  \cr   {x \ge  - {3 \over 4}}  \cr  } } \right. \Leftrightarrow x \ge  - {3 \over 4} \cr} \)

LG bài 5

Phương pháp giải:

Sử dụng \(m - \sqrt {{{\left( {x - a} \right)}^2} + b}  \le m - \sqrt b \) với \(a, b\ge 0\)

Lời giải chi tiết:

Ta có: \(\sqrt {{x^2} - 6x + 14}  \)\( = \sqrt {{x^2} - 6x + 9 + 5} \)\(= \sqrt {{{\left( {x - 3} \right)}^2} + 5}  \ge \sqrt 5 \) (vì \({\left( {x - 3} \right)^2} \ge 0\) với mọi x)

\( \Rightarrow  - \sqrt {{x^2} - 6x + 14}  \le  - \sqrt 5\)

\(  \Rightarrow 5 - \sqrt {{x^2} - 6x + 14}  \le 5 - \sqrt 5 \)

Vậy giá trị lớn nhất của P bằng \(5 - \sqrt 5 ;\) đạt được khi \(x - 3 = 0 \Leftrightarrow x = 3\) 

 Loigiaihay.com


Bình chọn:
3.4 trên 10 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài