Bài 73 trang 40 SGK Toán 9 tập 1


Giải bài 73 trang 40 SGK Toán 9 tập 1. Rút gọn rồi tính giá trị của các biểu thức sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Rút gọn rồi tính giá trị của các biểu thức sau:

LG a

\(\sqrt { - 9{\rm{a}}}  - \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}}^2}}\) tại \(a = - 9\)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\)

Lời giải chi tiết:

\(\eqalign{
& \sqrt { - 9{\rm{a}}} - \sqrt {9 + 12{\rm{a}} + 4{{\rm{a}}^2}} \cr &= \sqrt { - 9{\rm{a}}} - \sqrt {3^2 + 2.3.2a + ({{\rm{2a}})^2}} \cr 
& = \sqrt {{3^2}.\left( { - a} \right)} - \sqrt {{{\left( {3 + 2a} \right)}^2}} \cr 
& = 3\sqrt { - a} - \left| {3 + 2a} \right|\cr&\text{Thay a = - 9 ta được} \cr 
&  3\sqrt 9 - \left| {3 + 2.\left( { - 9} \right)} \right| \cr 
& = 3.3 - 15 = - 6 \cr} \)

LG b

\(\displaystyle 1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 4m + 4}\) tại \(m = 1,5\)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\)

Lời giải chi tiết:

Điều kiện \(m\ne 2\) 

\(\eqalign{
& 1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 4m + 4} \cr & =1 + {{3m} \over {m - 2}}\sqrt {{m^2} - 2.2.m + 2^2} \cr
& = 1 + {{3m} \over {m - 2}}\sqrt {{{\left( {m - 2} \right)}^2}} \cr 
& = 1 + {{3m\left| {m - 2} \right|} \over {m - 2}} \cr} \)                                                             

\( = \left\{ \matrix{
1 + 3m\left( {với\,\, m - 2  >  0} \right) \hfill \cr 
1 - 3m\left( {với \,\,m - 2 < 0} \right) \hfill \cr} \right. \)

\(= \left\{ \matrix{
1 + 3m\left( {với\,\, m> 2} \right) \hfill \cr 
1 - 3m\left( {với \,\,m < 2} \right) \hfill \cr} \right.\)

\(m = 1,5 < 2.\)

Vậy giá trị biểu thức tại \(m = 1,5\) là \(1 – 3m = 1 - 3.1,5 = -3,5\)

LG c

\(\sqrt {1 - 10{\rm{a}} + 25{{\rm{a}}^2}}  - 4{\rm{a}}\) tại \(a = \sqrt 2\)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\)

Lời giải chi tiết:

\(\eqalign{
& \sqrt {1 - 10{\rm{a}} + 25{{\rm{a}}^2}} - 4{\rm{a}} \cr & =\sqrt {1 - 2.1.5{\rm{a}} + (5{{\rm{a}})^2}} - 4{\rm{a}} \cr 
& {\rm{ = }}\sqrt {{{\left( {1 - 5{\rm{a}}} \right)}^2}} - 4{\rm{a}} \cr 
& {\rm{ = }}\left| {1 - 5{\rm{a}}} \right| - 4{\rm{a}} \cr 
& = \left\{ \matrix{
1 - 5{\rm{a}} - 4{\rm{a}}\left( {với\,\, 1 - 5{\rm{a}} \ge 0} \right) \hfill \cr 
5{\rm{a}} - 1 - 4{\rm{a}}\left( {với\,\, 1 - 5{\rm{a}} < 0} \right) \hfill \cr} \right. \cr 
& = \left\{ \matrix{
1 - 9{\rm{a}}\left( {với\,\, a \le {\displaystyle 1 \over \displaystyle 5}} \right) \hfill \cr 
a - 1\left( {với\,\, a > {\displaystyle 1 \over \displaystyle 5}} \right) \hfill \cr} \right. \cr} \)

Vì \(\displaystyle a= \sqrt 2  > {1 \over 5}\) .

Vậy giá trị của biểu thức tại \(a=\sqrt 2\) là \(a - 1 = \sqrt 2  - 1\)

LG d

\(4{\rm{x}} - \sqrt {9{{\rm{x}}^2} + 6{\rm{x}} + 1} \) tại  \(x= - \sqrt 3\)

Phương pháp giải:

Sử dụng công thức: \(\sqrt {{A^2}}  = \left| A \right|\)

Lời giải chi tiết:

\(\eqalign{
& 4{\rm{x}} - \sqrt {9{{\rm{x}}^2} + 6{\rm{x}} + 1} \cr & 4{\rm{x}} - \sqrt {(3{{\rm{x}})^2} + 2.3{\rm{x}} + 1} \cr 
& = 4{\rm{x}} - \sqrt {{{\left( {3{\rm{x}} + 1} \right)}^2}} \cr 
& = 4{\rm{x}} - \left| {3{\rm{x}} + 1} \right| \cr 
& = \left\{ \matrix{
4{\rm{x - }}\left( {3{\rm{x}} + 1} \right)\left( {với\, 3{\rm{x}} + 1 \ge 0} \right) \hfill \cr 
4{\rm{x}} + \left( {3{\rm{x}} + 1} \right)\left( {với\, 3{\rm{x}} + 1 < 0} \right) \hfill \cr} \right. \cr 
& = \left\{ \matrix{
4{\rm{x}} - 3{\rm{x}} - 1\left( {với \,3{\rm{x}} \ge - 1} \right) \hfill \cr 
4{\rm{x}} + 3{\rm{x}} + 1\left( {với \,3{\rm{x}} < - 1} \right) \hfill \cr} \right. \cr 
& = \left\{ \matrix{
x - 1\left( {v{\rm{ới \,x}} \ge - {1 \over 3}} \right) \hfill \cr 
7{\rm{x}} + 1\left( {với \,x < - {1 \over 3}} \right) \hfill \cr} \right. \cr} \)

Vì \( \displaystyle x=- \sqrt 3  <  - {1 \over 3}\) .

Giá trị của biểu thức tại \( x=- \sqrt 3\) là \(7x+1=7.( - \sqrt 3 ) + 1 =  - 7\sqrt 3  + 1\)

Chú ý: Các em có thể không phá dấu giá trị tuyệt đối mà thay trực tiếp giá trị của biến vào. 

Loigiaihay.com


Bình chọn:
3.6 trên 62 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài