Trả lời câu hỏi 4 Bài 4 trang 17 SGK Toán 8 Tập 2


Trả lời câu hỏi 4 Bài 4 trang 17 SGK Toán 8 Tập 2. Giải phương trình

Đề bài

Giải phương trình \(\left( {{x^3} + {x^2}} \right) + \left( {{x^2} + x} \right) = 0\).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

- Phân tích đa thức ở vế trái phương trình thành nhân tử bằng phương pháp đặt nhân tử chung.

- Đưa phương trình đã cho về dạng phương trình tích \(A(x).B(x)=0\)

- Giải phương trình tích: \(A(x).B(x)=0\)

\( \Leftrightarrow \) \(A(x)=0\) hoặc \(B(x)=0\)

Lời giải chi tiết

\(\eqalign{
& \left( {{x^3} + {x^2}} \right) + \left( {{x^2} + x} \right) = 0 \cr
& \Leftrightarrow {x^2}\left( {x + 1} \right) + x\left( {x + 1} \right) = 0 \cr
& \Leftrightarrow (x^2+x)(x+1)=0\cr 
& \Leftrightarrow x\left( {x + 1} \right)\left( {x + 1} \right) = 0 \cr
& \Leftrightarrow x{\left( {x + 1} \right)^2} = 0 \cr
& \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x + 1 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
x = - 1 \hfill \cr} \right. \cr} \)

Vậy tập nghiệm của phương trình là : \(S = \{0; -1\}\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 25 phiếu

Các bài liên quan: - Bài 4. Phương trình tích

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10 năm học 2021-2022, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài