Bài 25 trang 17 SGK Toán 8 tập 2


Giải bài 25 trang 17 SGK Toán 8 tập 2. Giải các phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình:

LG a.

\(2{x^3} + 6{x^2} = {x^2} + 3x;\)

Phương pháp giải:

Chuyển các hạng tử ở vế phải sang vế trái và phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung, đưa phương trình đã cho về dạng phương trình tích.

Giải chi tiết:

\(2{x^3} + 6{x^2} = {x^2} + 3x\)

⇔\(2{x^2}\left( {x + 3} \right) = x\left( {x + 3} \right)\)

⇔\(2{x^2}\left( {x + 3} \right) - x\left( {x + 3} \right) = 0\)

⇔ \(x\left( {x + 3} \right)\left( {2x - 1} \right) = 0\)

⇔\(\left[ {\matrix{{x = 0} \cr {x + 3 = 0} \cr {2x - 1 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = 0} \cr {x = - 3} \cr {x = \dfrac{1}{2}} \cr} } \right.} \right.\)

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {0; - 3;\dfrac{1}{2}} \right\}\)

LG b.

\(\left( {3x - 1} \right)\left( {{x^2} + 2} \right) = \left( {3x - 1} \right)\left( {7x - 10} \right)\)

Phương pháp giải:

Chuyển các hạng tử ở vế phải sang vế trái và phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích:

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Giải chi tiết:

\(\left( {3x - 1} \right)\left( {{x^2} + 2} \right) = \left( {3x - 1} \right)\left( {7x - 10} \right)\)

⇔\(\left( {3x - 1} \right)\left( {{x^2} + 2} \right) - \left( {3x - 1} \right)\left( {7x - 10} \right)\)\( = 0\)

⇔ \(\left( {3x - 1} \right)\left( {{x^2} + 2 - 7x + 10} \right) = 0\)

⇔\(\left( {3x - 1} \right)\left( {{x^2} - 7x + 12} \right) = 0\)

⇔\(\left( {3x - 1} \right)\left( {{x^2} - 3x - 4x + 12} \right) = 0\)

⇔\(\left( {3x - 1} \right)\left[ {\left( {{x^2} - 3x} \right) - \left( {4x - 12} \right)} \right] = 0\)

⇔\(\left( {3x - 1} \right)\left[ {x\left( {x - 3} \right) - 4\left( {x - 3} \right)} \right] = 0\)

⇔\(\left( {3x - 1} \right)\left( {x - 3} \right)\left( {x - 4} \right) = 0\)

⇔\(\left[ {\matrix{{3x - 1 = 0} \cr {x - 3 = 0} \cr {x - 4 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = \dfrac{1}{3}} \cr {x = 3} \cr {x = 4} \cr} } \right.} \right.\)

Vậy tập nghiệm của phương trình đã cho là \(S = \left\{ {\dfrac{1}{3};3;4} \right\}\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 143 phiếu

Các bài liên quan: - Bài 4. Phương trình tích

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

>> Học trực tuyến lớp 8 trên Tuyensinh247.com cam kết giúp học sinh lớp 8 học tốt, hoàn trả học phí nếu học không hiệu quả.


Góp ý Loigiaihay.com, nhận quà liền tay
Gửi bài