Bài 24 trang 17 SGK Toán 8 tập 2

Bình chọn:
3.9 trên 141 phiếu

Giải bài 24 trang 17 SGK Toán 8 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) \(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)

b) \({x^2} - x =  - 2x + 2\)

c) \(4{x^2} + 4x + 1 = {x^2}\)

d) \({x^2} - 5x + 6 = 0\)

Phương pháp giải - Xem chi tiết

- Chuyển vế phải sang vế trái và phân tích vế trái thành nhân tử.

- Áp dụng phương pháp giải phương trình tích: A(x).B(x) = 0 ⇔ A(x) = 0 hoặc B(x) = 0.

Lời giải chi tiết

a) \(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)

⇔\({\left( {x - 1} \right)^2} - 4 = 0\)

⇔\(\left( {x - 1 - 2} \right)\left( {x - 1 + 2} \right) = 0\)

⇔\(\left( {x - 3} \right)\left( {x + 1} \right) = 0\)

⇔\(\left[ {\matrix{{x - 3 = 0} \cr {x + 1 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = 3} \cr {x = - 1} \cr} } \right.\)

Vậy tập hợp nghiệm \(S = \left\{ {3; - 1} \right\}\) .

b) \({x^2} - x =  - 2x + 2\)

⇔\(x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\)

⇔\(\left[ {\matrix{{x - 1 = 0} \cr {x + 2 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = 1} \cr {x = - 2} \cr} } \right.} \right.\)

Vậy tập hợp nghiệm \(S = \left\{ {1; - 2} \right\}\).

c) \(4{x^2} + 4x + 1 = {x^2}\)       

⇔\({\left( {2x + 1} \right)^2} = {x^2}\)

⇔\(\left( {2x + 1 - x} \right)\left( {2x + 1 + x} \right) = 0\)

⇔\(\left[ {\matrix{{x + 1 = 0} \cr {3x + 1 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = - 1} \cr {x = {{ - 1} \over 3}} \cr} } \right.\)

Vậy tập hợp nghiệm \(S = \left\{ { - 1;{{ - 1} \over 3}} \right\}\)

d).\({x^2} - 5x + 6 = 0\)

\(\begin{array}{l}
\Leftrightarrow {x^2} - 4{\rm{x}} + 4 - x + 2 = 0\\
\Leftrightarrow \left( {{x^2} - 4{\rm{x}} + 4} \right) - \left( {x - 2} \right) = 0
\end{array}\)

⇔\({\left( {x - 2} \right)^2} - \left( {x - 2} \right) = 0\)

\( \Leftrightarrow \left( {x - 2} \right)\left( {x - 2 - 1} \right) = 0\)

⇔\(\left( {x - 2} \right)\left( {x - 3} \right) = 0\)

⇔\(\left[ {\matrix{{x - 2 = 0} \cr {x - 3 = 0} \cr} \Leftrightarrow \left[{\matrix{{x = 2} \cr {x = 3} \cr} } \right.} \right.\)

Vậy tập hợp nghiệm S = {2;3}.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 4. Phương trình tích

>>Học trực tuyến các môn học lớp 8, mọi lúc, mọi nơi môn Toán, Văn, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu