Bài 24 trang 17 SGK Toán 8 tập 2>
Giải các phương trình:
Video hướng dẫn giải
Giải các phương trình:
LG a.
\(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)
Phương pháp giải:
Sử dụng phương pháp phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức, đưa phương trình đã cho về dạng phương trình tích.
Giải chi tiết:
\(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)
⇔\({\left( {x - 1} \right)^2} - 4 = 0\)
⇔\({\left( {x - 1} \right)^2} - {2^2} = 0\)
⇔\(\left( {x - 1 - 2} \right)\left( {x - 1 + 2} \right) = 0\)
⇔\(\left( {x - 3} \right)\left( {x + 1} \right) = 0\)
⇔\(\left[ {\matrix{{x - 3 = 0} \cr {x + 1 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = 3} \cr {x = - 1} \cr} } \right.\)
Vậy tập hợp nghiệm \(S = \left\{ {3; - 1} \right\}\) .
LG b.
\({x^2} - x = - 2x + 2\)
Phương pháp giải:
Chuyển tất cả các hạng tử về vế trái, phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung đưa phương trình đã cho về dạng phương trình tích.
Giải chi tiết:
\({x^2} - x = - 2x + 2\)
⇔ \({x^2} - x + 2x - 2 = 0\)
⇔ \(\left( {{x^2} - x} \right) + \left( {2x - 2} \right) = 0\)
⇔ \(x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\)
⇔ \(\left( {x - 1} \right)\left( {x + 2} \right) = 0\)
⇔ \(\left[ {\matrix{{x - 1 = 0} \cr {x + 2 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = 1} \cr {x = - 2} \cr} } \right.} \right.\)
Vậy tập hợp nghiệm \(S = \left\{ {1; - 2} \right\}\).
LG c.
\(4{x^2} + 4x + 1 = {x^2}\)
Phương pháp giải:
Chuyển tất cả các hạng tử về vế trái, phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức đưa phương trình đã cho về dạng phương trình tích.
Giải chi tiết:
\(4{x^2} + 4x + 1 = {x^2}\)
⇔ \({\left( {2x} \right)^2} + 2.2x.1 + {1^2} = {x^2}\)
⇔ \({\left( {2x + 1} \right)^2} = {x^2}\)
⇔ \({\left( {2x + 1} \right)^2} - {x^2}=0\)
⇔\(\left( {2x + 1 - x} \right)\left( {2x + 1 + x} \right) = 0\)
⇔ \(\left( {x + 1} \right)\left( {3x + 1} \right) = 0\)
⇔ \(\left[ {\matrix{{x + 1 = 0} \cr {3x + 1 = 0} \cr} } \right.\)
⇔ \(\left[ \matrix{
x = - 1 \hfill \cr
3x = - 1 \hfill \cr} \right.\)
⇔ \( \left[ {\matrix{{x = - 1} \cr {x = \dfrac{{ - 1}}{3}} \cr} } \right.\)
Vậy tập hợp nghiệm \(S = \left\{ { - 1;\dfrac{{ - 1}}{3}} \right\}\)
LG d.
\({x^2} - 5x + 6 = 0\)
Phương pháp giải:
Phân tích vế trái thành nhân tử bằng phương pháp tách hạng tử \(-5x=-2x-3x\), đưa phương trình đã cho về dạng phương trình tích.
* Áp dụng phương pháp giải phương trình tích:
\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).
Giải chi tiết:
\({x^2} - 5x + 6 = 0\)
\(\eqalign{
& \Leftrightarrow {x^2} - 2x - 3x + 6 = 0 \cr
& \Leftrightarrow \left( {{x^2} - 2x} \right) + \left( { - 3x + 6} \right) = 0 \cr
& \Leftrightarrow x\left( {x - 2} \right) - 3\left( {x - 2} \right) = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x - 2 = 0 \hfill \cr
x - 3 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr
x = 3 \hfill \cr} \right. \cr} \)
Vậy tập hợp nghiệm của phương trình là \(S = \{2;3\}\).
Loigiaihay.com
- Bài 25 trang 17 SGK Toán 8 tập 2
- Bài 26 trang 17 SGK Toán 8 tập 2
- Bài 23 trang 17 SGK Toán 8 tập 2
- Bài 22 trang 17 SGK Toán 8 tập 2
- Bài 21 trang 17 SGK Toán 8 tập 2
>> Xem thêm