Bài 24 trang 17 SGK Toán 8 tập 2

Bình chọn:
3.8 trên 159 phiếu

Giải bài 24 trang 17 SGK Toán 8 tập 2. Giải các phương trình:

Đề bài

Giải các phương trình:

a) \(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)

b) \({x^2} - x =  - 2x + 2\)

c) \(4{x^2} + 4x + 1 = {x^2}\)

d) \({x^2} - 5x + 6 = 0\)

Phương pháp giải - Xem chi tiết

a) Sử dụng phương pháp phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức, đưa phương trình đã cho về dạng phương trình tích.

b) Chuyển tất cả các hạng tử về vế trái, phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung đưa phương trình đã cho về dạng phương trình tích.

c) Chuyển tất cả các hạng tử về vế trái, phân tích đa thức thành nhân tử bằng phương pháp dùng hằng đẳng thức đưa phương trình đã cho về dạng phương trình tích.

d) Phân tích vế trái thành nhân tử bằng phương pháp tách hạng tử \(-5x=-2x-3x\), đưa phương trình đã cho về dạng phương trình tích.

* Áp dụng phương pháp giải phương trình tích: 

\(A(x).B(x) = 0 ⇔ A(x) = 0\) hoặc \(B(x) = 0\).

Lời giải chi tiết

a) \(\left( {{x^2} - 2x + 1} \right) - 4 = 0\)

⇔\({\left( {x - 1} \right)^2} - 4 = 0\)

\({\left( {x - 1} \right)^2} - {2^2} = 0\)

⇔\(\left( {x - 1 - 2} \right)\left( {x - 1 + 2} \right) = 0\)

⇔\(\left( {x - 3} \right)\left( {x + 1} \right) = 0\)

⇔\(\left[ {\matrix{{x - 3 = 0} \cr {x + 1 = 0} \cr} } \right. \Leftrightarrow \left[ {\matrix{{x = 3} \cr {x = - 1} \cr} } \right.\)

Vậy tập hợp nghiệm \(S = \left\{ {3; - 1} \right\}\) .

b) \({x^2} - x =  - 2x + 2\)

⇔ \({x^2} - x + 2x - 2 = 0\)

⇔ \(\left( {{x^2} - x} \right) + \left( {2x - 2} \right) = 0\)

⇔ \(x\left( {x - 1} \right) + 2\left( {x - 1} \right) = 0\)

⇔ \(\left( {x - 1} \right)\left( {x + 2} \right) = 0\)

⇔ \(\left[ {\matrix{{x - 1 = 0} \cr {x + 2 = 0} \cr} \Leftrightarrow \left[ {\matrix{{x = 1} \cr {x = - 2} \cr} } \right.} \right.\)

Vậy tập hợp nghiệm \(S = \left\{ {1; - 2} \right\}\).

c) \(4{x^2} + 4x + 1 = {x^2}\) 

⇔ \({\left( {2x} \right)^2} + 2.2x.1 + {1^2} = {x^2}\)

⇔ \({\left( {2x + 1} \right)^2} = {x^2}\)

⇔ \({\left( {2x + 1} \right)^2} - {x^2}=0\)

⇔\(\left( {2x + 1 - x} \right)\left( {2x + 1 + x} \right) = 0\)

 \(\left( {x + 1} \right)\left( {3x + 1} \right) = 0\)

⇔ \(\left[ {\matrix{{x + 1 = 0} \cr {3x + 1 = 0} \cr} } \right.\)

 \(\left[ \matrix{
x = - 1 \hfill \cr
3x = - 1 \hfill \cr} \right.\)

⇔ \( \left[ {\matrix{{x = - 1} \cr {x = \dfrac{{ - 1}}{3}} \cr} } \right.\)

Vậy tập hợp nghiệm \(S = \left\{ { - 1;\dfrac{{ - 1}}{3}} \right\}\)

d) \({x^2} - 5x + 6 = 0\)

\(\eqalign{
& \Leftrightarrow {x^2} - 2x - 3x + 6 = 0 \cr
& \Leftrightarrow \left( {{x^2} - 2x} \right) + \left( { - 3x + 6} \right) = 0 \cr
& \Leftrightarrow x\left( {x - 2} \right) - 3\left( {x - 2} \right) = 0 \cr
& \Leftrightarrow \left( {x - 2} \right)\left( {x - 3} \right) = 0 \cr
& \Leftrightarrow \left[ \matrix{
x - 2 = 0 \hfill \cr
x - 3 = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left[ \matrix{
x = 2 \hfill \cr
x = 3 \hfill \cr} \right. \cr} \)

Vậy tập hợp nghiệm của phương trình là \(S = \{2;3\}\).

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 8 - Xem ngay

Các bài liên quan: - Bài 4. Phương trình tích

>>Học trực tuyến lớp 8 trên Tuyensinh247.com mọi lúc, mọi nơi đầy đủ các môn: Toán, Văn, Anh, Lý, Hóa, Sử, Địa cùng các thầy cô giáo dạy giỏi, nổi tiếng.