Lý thuyết về căn thức bậc hai và hằng đẳng thức √A^2= |A|


Lý thuyết về căn thức bậc hai và hằng đẳng thức √A^2= |A|. Với A là một biểu thức đại số, người ta goi·

1. Căn thức bậc hai

Với \(A\) là một biểu thức đại số, người ta gọi \(\sqrt A \) là căn thức bậc hai của \(A\). Khi đó, \(A\) được gọi là biểu thức lấy căn hay biểu thức dưới dấu căn.

\(\sqrt A \) xác định hay có nghĩa khi \(A\) lấy giá trị không âm.

2. Hằng đẳng thức \(\sqrt {{A^2}}  = \left| A \right|\)  

Với mọi số \(a\), ta có \(\sqrt {{a^2}}  = \left| a \right|\).

* Một cách tổng quát, với \(A\) là một biểu thức ta có 

\(\sqrt {{A^2}}  = \left| A \right|\) nghĩa là 

\(\sqrt {{A^2}}  = A\) nếu \(A \ge 0\) và \(\sqrt {{A^2}}  =  - A\) nếu \(A < 0\).

3. Các dạng toán cơ bản

Dạng 1: Tìm điều kiện để căn thức xác định

Ta có \(\sqrt A \) xác định hay có nghĩa khi \(A\ge 0\) 

Ví dụ: \(\sqrt {x - 1} \) xác định khi \(x - 1 \ge 0 \Leftrightarrow x \ge 1\)

Dạng 2: Rút gọn biểu thức 

Sử dụng:  Với \(A\) là một biểu thức ta có \(\sqrt {{A^2}}  = \left| A \right|\)

Vì dụ: Với \(x>2\) ta có: \(A = \dfrac{{\sqrt {{x^2} - 4x + 4} }}{{x - 2}}\)\( = \dfrac{{\sqrt {{{\left( {x - 2} \right)}^2}} }}{{x - 2}} = \dfrac{{\left| {x - 2} \right|}}{{x - 2}} \)\(= \dfrac{{x - 2}}{{x - 2}} = 1\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4 trên 41 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài