Bài 10 trang 11 SGK Toán 9 tập 1

Bình chọn:
4.2 trên 122 phiếu

Giải bài 10 trang 11 SGK Toán 9 tập 1. Chứng minh

Lựa chọn câu để xem lời giải nhanh hơn

Chứng minh 

LG a

\((\sqrt{3}- 1)^{2}= 4 - 2\sqrt{3}\) 

Phương pháp giải:

+) Sử dụng hằng đẳng thức: \((a-b)^2=a^2-2ab+b^2\)

+) Sử dụng công thức \((\sqrt{a})^2=a\), với \(a \ge 0\). 

+) Sử dụng định nghĩa giá trị tuyệt đối của số \(a\): Nếu \(a \ge 0\) thì \( \left| a \right| =a\). Nếu \( a< 0\) thì \( \left| a \right| = -a\). 

+) Sử dụng định lí so sánh các căn bậc hai số học: Với hai số \(a ,\ b\) không âm, ta có:

\[a< b \Leftrightarrow \sqrt{a}< \sqrt{b} \]

Giải chi tiết:

Ta có: VT=\({\left( {\sqrt 3  - 1} \right)^2} = {\left( {\sqrt 3 } \right)^2} - 2. \sqrt 3 .1 + {1^2}\)

\( = 3 - 2\sqrt 3  + 1\)

\(=(3+1)-2\sqrt 3 \)

\(= 4 - 2\sqrt 3 \) = VP

Vậy  \((\sqrt{3}- 1)^{2}= 4 - 2\sqrt{3}\)  (đpcm)

LG b

\(\sqrt{4 - 2\sqrt{3}}- \sqrt{3} = -1\) 

Phương pháp giải:

+) Sử dụng hằng đẳng thức: \((a-b)^2=a^2-2ab+b^2\)

+) Sử dụng công thức \((\sqrt{a})^2=a\), với \(a \ge 0\). 

+) Sử dụng định nghĩa giá trị tuyệt đối của số \(a\): Nếu \(a \ge 0\) thì \( \left| a \right| =a\). Nếu \( a< 0\) thì \( \left| a \right| = -a\). 

+) Sử dụng định lí so sánh các căn bậc hai số học: Với hai số \(a ,\ b\) không âm, ta có:

\[a< b \Leftrightarrow \sqrt{a}< \sqrt{b} \]

Giải chi tiết:

Ta có: 

VT=\(\sqrt {4 - 2\sqrt 3 }  - \sqrt 3  = \sqrt {\left( {3 + 1} \right) - 2\sqrt 3 }  - \sqrt 3 \)

 \( = \sqrt {3 - 2\sqrt 3  + 1}  - \sqrt 3 \)

\(= \sqrt {{{\left( {\sqrt 3 } \right)}^2} - 2.\sqrt 3 .1 + {1^2}}  - \sqrt 3 \)

\( = \sqrt {{{\left( {\sqrt 3  - 1} \right)}^2}}  - \sqrt 3 \)

\( = \left| {\sqrt 3  - 1} \right| - \sqrt 3 \).

Lại có:

\(\left\{ \matrix{
{\left( {\sqrt 3 } \right)^2} = 3 \hfill \cr 
{\left( {\sqrt 1 } \right)^2} = 1 \hfill \cr} \right.\)

Mà \(3>1 \Leftrightarrow \sqrt 3  > \sqrt 1 \Leftrightarrow \sqrt 3 > 1 \Leftrightarrow \sqrt 3 -1 > 0 \).

\(\Rightarrow \left| \sqrt 3 -1 \right| = \sqrt 3 -1\).

Do đó  \(\left| {\sqrt 3  - 1} \right| - \sqrt 3 = \sqrt 3 -1 - \sqrt 3\)

\(= (\sqrt 3 - \sqrt 3) -1= -1\) = VP.

Vậy \(\sqrt {4 - 2\sqrt 3 }  - \sqrt 3 =-1\)  (đpcm)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Gửi văn hay nhận ngay phần thưởng