Bài 16 trang 12 SGK Toán 9 tập 1


Đề bài

Đố. Hãy tìm chỗ sai trong phép chứng minh "Con muỗi nặng bằng con voi" dưới đây. 

Giả sử con muỗi nặng \(m\) (gam), còn con voi nặng \(V\) (gam). Ta có

                      \({m^2} + {V^2} = {V^2} + {m^2}\)

Cộng hai về với \(-2mV\), ta có

                      \({m^2} - 2mV + {V^2} = {V^2} - 2mV + {m^2},\)

hay                 \({\left( {m - V} \right)^2} = {\left( {V - m} \right)^2}\)

Lấy căn bậc hai mỗi vế của bất đẳng thức trên, ta được:

                       \(\sqrt {{{\left( {m - V} \right)}^2}}  = \sqrt {{{\left( {V - m} \right)}^2}} \)          (1)

Do đó                \(m - V = V - m\)                          (2)

Từ đó ta có \(2m = 2V\), suy ra \(m = V\). Vậy con muỗi nặng bằng con voi (!).

Video hướng dẫn giải

Phương pháp giải - Xem chi tiết

+) Sử dụng hằng đẳng thức: \( \sqrt{A^2}=\left| A \right|\).

Lời giải chi tiết

Áp dụng hằng đẳng thức \( \sqrt{A^2}=\left| A \right|\) thì ta phải có: 

\(\left\{ \matrix{
\sqrt {{{\left( {m - V} \right)}^2}} = \left| {m - V} \right| \hfill \cr
\sqrt {{{\left( {V - m} \right)}^2}} = \left| {V - m} \right| \hfill \cr} \right.\)

Do đó:  \(\sqrt {{{\left( {m - V} \right)}^2}}  = \sqrt {{{\left( {V - m} \right)}^2}} \)

        \(\Leftrightarrow \left| m-V\right|=\left|V-m\right|.\)

Vậy bài toán trên sai từ dòng (1) xuống dòng (2) vì khai căn không có dấu giá trị tuyệt đối.

Do đó, con muỗi không thể nặng bằng con voi.

Loigiaihay.com


Bình chọn:
4.6 trên 41 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9 và luyện vào lớp 10 tại Tuyensinh247.com. , cam kết giúp học sinh lớp 9 học tốt, hoàn trả học phí nếu học không hiệu quả.