Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 1 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 2 - Chương 1 - Đại số 9.

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Tìm x để mỗi căn thức sau có nghĩa :

a. \(\sqrt {2x - 3} \)

b. \(\sqrt {{1 \over {2 - x}}} \)

c. \(\sqrt {x + 1}  + \sqrt {1 - x} \)

Bài 2. Rút gọn các biểu thức :

a. \(\sqrt {9 - 4\sqrt 5 }  - \sqrt 5 \)

b. \(\sqrt {3 - 2\sqrt 2 }  - \sqrt {3 + 2\sqrt 2 } \)

LG bài 1

Phương pháp giải:

\(\sqrt A \) có nghĩa khi \(A\ge 0\) 

Lời giải chi tiết:

a. \(\sqrt {2x - 3} \) có nghĩa \( \Leftrightarrow 2x - 3 \ge 0 \Leftrightarrow x \ge {3 \over 2}\)

b. \(\sqrt {{1 \over {2 - x}}} \) có nghĩa \( \Leftrightarrow {1 \over {2 - x}} \ge 0 \Leftrightarrow 2 - x > 0 \Leftrightarrow x < 2\)

c. \(\sqrt {x + 1}  + \sqrt {1 - x} \) có nghĩa \( \Leftrightarrow \left\{ {\matrix{   {x + 1 \ge 0}  \cr   {1 - x \ge 0}  \cr  } } \right. \Leftrightarrow \left\{ {\matrix{   {x \ge  - 1}  \cr   {x \le 1}  \cr  } } \right.\)

\( \Leftrightarrow  - 1 \le x \le 1\)

LG bài 2

Phương pháp giải:

Sử dụng:

\(\sqrt {{A^2}} = \left| A \right| = \left\{ \begin{array}{l}
A\,khi\,A \ge 0\\
- A\,khi\,A < 0
\end{array} \right.\)

Lời giải chi tiết:

a.  Ta có: 

\(\eqalign{  & \sqrt {9 - 4\sqrt 5 }  - \sqrt 5 \cr& = \sqrt {{{\left( {\sqrt 5  - 2} \right)}^2}}  - \sqrt 5   \cr  &  = \left| {\sqrt 5  - 2} \right| - \sqrt 5   \cr  &  = \sqrt 5  - 2 - \sqrt 5  =  - 2   \cr} \)

 \(( {\text{Vì}\,\sqrt 5  - 2 > 0 \Rightarrow \left| {\sqrt 5  - 2} \right| = \sqrt 5  - 2} ) \)

b. Ta có:

\(\eqalign{  & \sqrt {3 - 2\sqrt 2 }  - \sqrt {3 + 2\sqrt 2 }  \cr&= \sqrt {{{\left( {1 - \sqrt 2 } \right)}^2}}  - \sqrt {{{\left( {1 + \sqrt 2 } \right)}^2}}   \cr  &  = \left| {1 - \sqrt 2 } \right| - \left| {1 + \sqrt 2 } \right| \cr&=  - \left( {1 - \sqrt 2 } \right) - \left( {1 + \sqrt 2 } \right) =  - 2  \cr} \)

\(( \text{Vì}\,1 - \sqrt 2  < 0 \) \(\Rightarrow \left| {1 - \sqrt 2 } \right| =  - \left( {1 - \sqrt 2 } \right) )\)

Loigiaihay.com


Bình chọn:
4.1 trên 9 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài