Bài 15 trang 11 SGK Toán 9 tập 1

Bình chọn:
4.7 trên 75 phiếu

Giải bài 15 trang 11 SGK Toán 9 tập 1. Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^2} - 5 = 0\);              b) \({x^2} - 2\sqrt {11} x + 11 = 0\)

Phương pháp giải - Xem chi tiết

+) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\).

+) Nếu \(a.b=0\) thì \(a=0\) hoặc \(b=0\).

+) Sử dụng các hằng đẳng thức:

     \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

     \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\)

Lời giải chi tiết

a) Ta có: \({x^2} - 5 = 0\)

         \(\Leftrightarrow {x^2} - {\left( {\sqrt 5 } \right)^2} = 0\)    (AD hằng đẳng thức số 3)

         \(\Leftrightarrow \left( {x + \sqrt 5 } \right).\left( {x - \sqrt 5 } \right) = 0\)

        \( \Leftrightarrow \left[ \matrix{
x + \sqrt 5 = 0 \hfill \cr
x - \sqrt 5 = 0 \hfill \cr} \right.\)

        \( \Leftrightarrow \left[ \matrix{
x = - \sqrt 5 \hfill \cr
x = \sqrt 5 \hfill \cr} \right.\)

Vậy \( S = \left\{ { - \sqrt 5 ;\sqrt 5 } \right\} \).

b) Ta có:

\({x^2} - 2\sqrt {11} x + 11 = 0  \)
\( \Leftrightarrow {x^2} - 2.x.\sqrt {11} + {\left( {\sqrt {11} } \right)^2} = 0 \)
\( \Leftrightarrow {\left( {x - \sqrt {11} } \right)^2} = 0  \)
\(\Leftrightarrow x - \sqrt {11} =0\)

\(\Leftrightarrow x = \sqrt {11} \)

Vậy \(S = \left\{ {\sqrt {11} } \right\} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

Các bài liên quan: - Bài 2. Căn thức bậc hai và hằng đẳng thức

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa . Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu