Bài 15 trang 11 SGK Toán 9 tập 1

Bình chọn:
4.6 trên 87 phiếu

Giải bài 15 trang 11 SGK Toán 9 tập 1. Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^2} - 5 = 0\);              b) \({x^2} - 2\sqrt {11} x + 11 = 0\)

Phương pháp giải - Xem chi tiết

+) Với \(a \ge 0\) ta luôn có: \(a={\left( {\sqrt a } \right)^2}\).

+) Nếu \(a.b=0\) thì \(a=0\) hoặc \(b=0\).

+) Sử dụng các hằng đẳng thức:

     \({\left( {a - b} \right)^2} = {a^2} - 2ab + {b^2}\)

     \({a^2} - {b^2} = \left( {a - b} \right).\left( {a + b} \right)\)

Lời giải chi tiết

a) Ta có: \({x^2} - 5 = 0\)

         \(\Leftrightarrow {x^2} - {\left( {\sqrt 5 } \right)^2} = 0\) 

         \(\Leftrightarrow \left( {x + \sqrt 5 } \right).\left( {x - \sqrt 5 } \right) = 0\)

        \( \Leftrightarrow \left[ \matrix{
x + \sqrt 5 = 0 \hfill \cr
x - \sqrt 5 = 0 \hfill \cr} \right.\)

        \( \Leftrightarrow \left[ \matrix{
x = - \sqrt 5 \hfill \cr
x = \sqrt 5 \hfill \cr} \right.\)

Vậy \( S = \left\{ { - \sqrt 5 ;\sqrt 5 } \right\} \).

b) Ta có:

\({x^2} - 2\sqrt {11} x + 11 = 0  \)
\( \Leftrightarrow {x^2} - 2.x.\sqrt {11} + {\left( {\sqrt {11} } \right)^2} = 0 \)
\( \Leftrightarrow {\left( {x - \sqrt {11} } \right)^2} = 0  \)
\(\Leftrightarrow x - \sqrt {11} =0\)

\(\Leftrightarrow x = \sqrt {11} \)

Vậy \(S = \left\{ {\sqrt {11} } \right\} \)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com