Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 1 - Đại số 9

Bình chọn:
3.7 trên 7 phiếu

Giải bài tập Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 1 - Đại số 9

Đề bài

Bài 1. Chứng minh rằng : \(\sqrt {x + 2\sqrt {x - 1} }  + \sqrt {x - 2\sqrt {x - 1} } \) \( = 2\sqrt {x - 1} \), với x 2.

Bài 2. Rút gọn :

a. \(A = \left( {\sqrt 2  - 3} \right)\sqrt {11 + 6\sqrt 2 } \)

b. \(B = \sqrt {23 + 8\sqrt 7 }  - \sqrt 7 \)

Bài 3. Tính giá trị của biểu thức :

\(A =  - 4x + 2 + \sqrt {9{x^2} - 6x + 1} ,\) với \(x = 2009\).

Lời giải chi tiết

Bài 1. Biến đổi vế trái, ta được:

\(\eqalign{  & VT = \sqrt {{{\left( {\sqrt {x - 1}  + 1} \right)}^2}}  + \sqrt {{{\left( {\sqrt {x - 1}  - 1} \right)}^2}}   \cr  &  = \left| {\sqrt {x - 1}  + 1} \right| + \left| {\sqrt {x - 1}  - 1} \right| \cr} \)

 Vì \(x \ge 2 \Rightarrow x - 1 \ge 1 \Rightarrow \sqrt {x - 1}  \ge 1 \) \(\Rightarrow \sqrt {x - 1}  - 1 \ge 0 \)

Vậy : \(VT = \sqrt {x - 1}  + 1 + \sqrt {x - 1}  - 1 \) \(= 2\sqrt {x - 1}  = VP\,(đpcm)\)

Bài 2. a. Ta có:

\(\eqalign{  & A = \left( {\sqrt 2  - 3} \right).\sqrt {{{\left( {3 + \sqrt 2 } \right)}^2}}   \cr  &  = \left( {\sqrt 2  - 3} \right).\left( {3 + \sqrt 2 } \right)  \cr  &  = {\left( {\sqrt 2 } \right)^2} - {3^2} = 2 - 9 =  - 7. \cr} \)

b. Ta có:

\(\eqalign{  & B = \sqrt {{{\left( {4 + \sqrt 7 } \right)}^2}}  - \sqrt 7   \cr  &  = \left| {4 + \sqrt 7 } \right| - \sqrt 7  = 4 \cr} \)

Bài 3. Ta có: \(A =  - 4x + 2 + \sqrt {{{\left( {3x - 1} \right)}^2}}  \)\(=  - 4x + 2 + \left| {3x - 1} \right|\)

Vì \(x = 2009\) nên \(3x - 1 = 3.2009 - 1 > 0\)

Vậy : \(A = -4x + 2 + 3x - 1 = -x + 1\)

Khi \(x = 2009 ⇒ A = -2008\). 

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com