 Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                                                
                            Giải toán 9, giải bài tập toán lớp 9 đầy đủ đại số và hình học
                         Bài 6. Tính chất của hai tiếp tuyến cắt nhau
                                                        Bài 6. Tính chất của hai tiếp tuyến cắt nhau
                                                    Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9>
Giải Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9
Đề bài
Cho tam giác ABC. Gọi O1, O2, O3 là tâm các đường tròn bàng tiếp cỉa tam giác ABC. Chứng minh rằng A, B, C là chân các đường cao của tam giác O1O2O3.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất tia phân giác của để chứng minh: \(\widehat {{O_1}CB} = \widehat {{O_2}CA}\) và \(\widehat {BC{O_3}} = \widehat {AC{O_3}}\)
Lời giải chi tiết

Ta có các tia CO1 và CO2 là phân giác của góc ngoài ở đỉnh C của ∆ABC nên C nằm trên đường thẳng O1O2 và \(\widehat {{O_1}CB} = \widehat {{O_2}CA}\) (1)
Vì CO3 là tia phân giác của \(\widehat {BCA}\) nên
\(\widehat {BC{O_3}} = \widehat {AC{O_3}}\) (2)
Từ (1) và (2) ta có: \(\widehat {{O_1}C{O_3}} = \widehat {{O_3}C{O_2}} = 90^\circ \) hay CO3 là đường cao của tam giác O1O2O3.
Chứng minh tương tự AO1, BO2 cũng là các đường cao của tam giác O1O2O3.
Loigiaihay.com
 Bình luận
Bình luận
                                                 Chia sẻ
 Chia sẻ- Đề kiểm tra 15 phút - Đề số 10 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 8 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 6 - Chương 2 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục
 
                 
                 
                                     
                                     
        
 
                                            




 
             
            