

Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9
Giải Đề kiểm tra 15 phút - Đề số 9 - Bài 6 - Chương 2 - Hình học 9
Đề bài
Cho tam giác ABC. Gọi O1, O2, O3 là tâm các đường tròn bàng tiếp cỉa tam giác ABC. Chứng minh rằng A, B, C là chân các đường cao của tam giác O1O2O3.
Phương pháp giải - Xem chi tiết
Sử dụng tính chất tia phân giác của để chứng minh: và
Lời giải chi tiết
Ta có các tia CO1 và CO2 là phân giác của góc ngoài ở đỉnh C của ∆ABC nên C nằm trên đường thẳng O1O2 và (1)
Vì CO3 là tia phân giác của nên
(2)
Từ (1) và (2) ta có: hay CO3 là đường cao của tam giác O1O2O3.
Chứng minh tương tự AO1, BO2 cũng là các đường cao của tam giác O1O2O3.
Loigiaihay.com


- Đề kiểm tra 15 phút - Đề số 10 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 8 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 7 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 6 - Bài 6 - Chương 2 - Hình học 9
- Đề kiểm tra 15 phút - Đề số 5 - Bài 6 - Chương 2 - Hình học 9
>> Xem thêm
Các bài khác cùng chuyên mục