Đề kiểm tra 15 phút - Đề số 3 - Bài 6 - Chương 2 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 6 - Chương 2 - Hình học 9

Đề bài

Cho nửa đường tròn (O; R) đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn (M khác A và B) kẻ tiếp tuyến thứ ba cắt các tiếp tuyến tại A và B lần lượt tại C và D.

a. Chứng minh rằng : \(CD = CA + BD\); \(\widehat {COD} = 90^\circ \)

b. Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.

Phương pháp giải - Xem chi tiết

a. Sử dụng

+Tính chất hai tiếp tuyến cắt nhau

+ Tia phân giác hai góc kề bù

b.Sử dụng:

+Trong tam giác vuông đường trung tuyến ứng với cạnh huyền bằng nửa cạnh huyền

+Tính chất đường trung bình của hình thang

Lời giải chi tiết

a. Ta có: \(CA = CM, DB = DM\) (tính chất của hai tiếp tuyến cắt nhau)

Mà \(CD = CM + DM \)\(\;⇒ CD = CA + BD\)

Lại có CO và DO là các tia phân giác của các góc kề bù \(\widehat {AOM}\) và \(\widehat {BOM}\) nên \(\widehat {COD} = 90^\circ \)

b. Gọi I là trung điểm của CD, ta có: OI là đường trung tuyến của tam giác vuông COD nên \(IO = IC = ID\).

hay OI là bán kính của đường tròn đường kính CD.

Dễ thấy tứ giác ABCD là hình thang vuông có OI là đường trung bình nên IO // AC và BD mà AC và BD cùng vuông góc với AB (gt)

\(⇒ IO ⊥ AB.\) Chứng tỏ AB là tiếp tuyến của đường tròn đường kính CD.

Loigiaihay.com


Bình chọn:
3.3 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài