Đề kiểm tra 15 phút - Đề số 5 - Bài 7 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 7 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Giải phương trình:\({1 \over {x + 1}} + {2 \over {x - 2}} = 1.\)

Bài 2: Giải phương trình : \({x^2} - 4x + 3\left| {x - 2} \right| + 6 = 0.\)

Bài 3: Giải phương trình : \(2{x^2} - 6x + \sqrt {{x^2} - 3x + 6}  + 2 = 0.\)

LG bài 1

Phương pháp giải:

Tìm điều kiện xác định

Quy đồng bỏ mẫu rồi đưa về phương trình bậc hai

Lời giải chi tiết:

Bài  1: 

\({1 \over {x + 1}} + {2 \over {x - 2}} = 1 \)

\(\Leftrightarrow \left\{ \matrix{  x \ne  - 1 \hfill \cr  x \ne 2 \hfill \cr  x - 2 + 2\left( {x + 1} \right) = \left( {x + 1} \right)\left( {x - 2} \right) \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ne  - 1 \hfill \cr  x \ne 2 \hfill \cr  {x^2} - 4x - 2 = 0 \hfill \cr}  \right. \Leftrightarrow x = 2 \pm \sqrt 6 .\)

LG bài 2

Phương pháp giải:

Đặt ẩn phụ: \(t = \left| {x - 2} \right|;t \ge 0 \)

Lời giải chi tiết:

Bài 2: Đặt \(t = \left| {x - 2} \right|;t \ge 0 \)\(\;\Rightarrow {t^2} = {x^2} - 4x + 4 \)\(\;\Rightarrow {x^2} - 4x = {t^2} - 4\)

Ta có phương trình: \({t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \matrix{  t =  - 1 \hfill \cr  t =  - 2 \hfill \cr}  \right.\) ( vô nghiệm vì \(t ≥ 0\)).

LG bài 3

Phương pháp giải:

Đặt ẩn phụ: \(t = \sqrt {{x^2} - 3x + 6} ;t \ge 0 \)

Lời giải chi tiết:

Bài 3: Đặt \(t = \sqrt {{x^2} - 3x + 6} ;t \ge 0 \)\(\;\Rightarrow {t^2} = {x^2} - 3x + 6\)

\( \Rightarrow 2{t^2} = 2{x^2} - 6x + 12 \)\(\;\Rightarrow 2{x^2} - 6x = 2{t^2} - 12\)

Ta có phương trình:

\(2{t^2} + t - 10 = 0 \Leftrightarrow \left[ {\matrix{   {{\rm{t}} = 2\left( {{\text{nhận}}} \right)}  \cr   {{\rm{t}} =  - {5 \over 2}\left( {{\text{loại}}} \right)}  \cr  } } \right.\)

Vậy : \({x^2} - 3x + 6 = 4 \Leftrightarrow {x^2} - 3x + 2 = 0 \)\(\;\Leftrightarrow \left[ \matrix{  x = 1 \hfill \cr  x = 2. \hfill \cr}  \right.\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài