Đề kiểm tra 15 phút - Đề số 2 - Bài 7 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 7 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Không giải phương trình, hãy cho biết số nghiệm của phương trình \({x^4} - 5{x^2} + 4 = 0.\)

Bài 2: Giải phương trình:

a) \({x^2} + x - 2 = \left| x \right|\)                               

b) \(\sqrt {x - 1}  = x - 3.\)

LG bài 1

Phương pháp giải:

Đặt ẩn phụ quy về phương trình bậc hai

Tính delta sau đó áp dụng Vi-et để xét dấu tổng và tích hai nghiệm của pt bậc hai

Suy ra số nghiệm của pt ban đầu

Lời giải chi tiết:

Bài 1: Đặt \(t = {x^2};t \ge 0.\) Ta có phương trình : \({t^2} - 5t + 4 = 0\,\,\,\,\left( * \right)\)

Ta có : \(\left\{ \matrix{  \Delta  = 9 > 0 \hfill \cr  P = 4 > 0 \hfill \cr  S = 5 > 0 \hfill \cr}  \right.\)

Vậy phương trình (*) có hai nghiệm phân biệt dương, nên phương trình đã cho có bốn nghiệm phân biệt.

LG bài 2

Phương pháp giải:

a.Xét hai trường hợp:  \(x ≥ 0\) và \(x < 0\)

b. Sử dụng

\(\sqrt A  = B \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{B \ge 0}\\{A = {B^2}}\end{array}} \right.\)

Lời giải chi tiết:

Bài 2:

a) \({x^2} + x - 2 = \left| x \right|\,\,\,\left( * \right)\)

+) Nếu \(x ≥ 0\), ta có : (*) \( \Leftrightarrow {x^2} + x - 2 = x \Leftrightarrow x =  \pm \sqrt 2 \))

Vì \(x ≥ 0\), ta lấy \(x = \sqrt 2 .\)

+) Nếu \(x < 0\), ta có : (*) \( \Leftrightarrow {x^2} + x - 2 =  - x \)\(\;\Leftrightarrow {x^2} + 2x - 2 = 0 \Leftrightarrow x =  - 1 \pm \sqrt 3 \)

Vì \(x < 0\), ta lấy \(x =  - 1 - \sqrt 3 .\)

b) \(\sqrt {x - 1}  = x - 3 \)

\(\Leftrightarrow \left\{ \matrix{  x - 3 \ge 0 \hfill \cr  x - 1 = {\left( {x - 3} \right)^2} \hfill \cr}  \right.\)

\(\; \Leftrightarrow \left\{ \matrix{  x \ge 3 \hfill \cr  {x^2} - 7x + 10 = 0 \hfill \cr}  \right.\)

\( \Leftrightarrow \left\{ \matrix{  x \ge 3 \hfill \cr  \left[ \matrix{  x = 2 \hfill \cr  x = 5 \hfill \cr}  \right. \hfill \cr}  \right. \Leftrightarrow x = 5.\)

 Loigiaihay.com


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài