Bài 39 trang 57 SGK Toán 9 tập 2

Bình chọn:
4 trên 25 phiếu

Giải bài 39 trang 57 SGK Toán 9 tập 2. Giải phương trình bằng cách đưa về phương trình tích.

Đề bài

Giải phương trình bằng cách đưa về phương trình tích.

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\);

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\);                     

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\);

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\).

Phương pháp giải - Xem chi tiết

Đưa phương trình về dạng phương trình tích sau đó áp dụng phương pháp giải phương trình tích tìm nghiệm

\(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Hoặc \(A.B.C = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0\\
C = 0
\end{array} \right.\)

Lời giải chi tiết

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow\)\(\left[ \matrix{
(3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10){\rm{ }} = {\rm{ }}0(1) \hfill \cr
2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + \sqrt 5 -{\rm{ }}3{\rm{ }} = {\rm{ }}0(2) \hfill \cr} \right.\)

Giải (1): phương trình \(a - b + c = 3 + 7 - 10 = 0\)

nên \({x_1} =  - 1,{x_2} =  - {{ - 10} \over 3} = {{10} \over 3}\)

Giải (2): phương trình có \(a + b + c = 2 + (1 -  \sqrt{5}) +  \sqrt{5} - 3 = 0\)

nên  \({x_3} = 1,{x_4} = {{\sqrt 5  - 3} \over 2}\)

Vậy phương trình đã cho có 4 nghiệm phân biệt.

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\) \(\Leftrightarrow {x^2}\left( {x{\rm{ }} + {\rm{ }}3} \right){\rm{ }}-{\rm{ }}2\left( {x{\rm{ }} + {\rm{ }}3} \right){\rm{ }} = {\rm{ }}0 \)

\(\Leftrightarrow \left( {x{\rm{ }} + {\rm{ }}3} \right)({x^2} - {\rm{ }}2){\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow\)\(\left[ \matrix{
x + 3 = 0 \hfill \cr
{x^2} - {\rm{ }}2{\rm{ }} = {\rm{ }}0 \hfill \cr} \right.\)

Giải ra \({x_1} = {\rm{ }} - 3,{\rm{ }}{x_{2}} = {\rm{ }} - \sqrt 2 ,{\rm{ }}{x_{3}} = \sqrt 2 \)

Vậy phương trình đã cho có 3 nghiệm phân biệt.

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\) 

\( \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = x\left( {0,6x + 1} \right)\)

\( \Leftrightarrow {\rm{ }}\left( {0,6x{\rm{ }} + {\rm{ }}1} \right)\left( {{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}1} \right){\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow \left[ \matrix{
0,6x + 1 = 0(1) \hfill \cr
{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0(2) \hfill \cr} \right.\)

(1) ⇔ \(0,6x + 1 = 0 \)

\( \Leftrightarrow {x_1} =  - {1 \over {0,6}} =  - {5 \over 3}\)

Giải phương trình (2) ta có :\(\Delta  = {( - 1)^2} - 4.1.( - 1) = 1 + 4 = 5,\sqrt \Delta   = \sqrt 5 >0\)

Nên phương trình (2) có 2 nghiệm phân biệt: \({x_2} = {\rm{ }}{{1 - \sqrt 5 } \over 2},{x_3} = {{1 + \sqrt 5 } \over 2}\)

Vậy phương trình có ba nghiệm:

\({x_1} =  - {5 \over 3},{x_2} = {{1 - \sqrt 5 } \over 2},{x_3} = {{1 + \sqrt 5 } \over 2}\),

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\)\( \Leftrightarrow {\rm{ }}{({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} - {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2} = {\rm{ }}0\)

\(\Leftrightarrow ({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} + {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5).\)

\(({\rm{ }}{x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5{\rm{ }} - {\rm{ }}{x^2} + {\rm{ }}x{\rm{ }} - {\rm{ }}5){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}x)\left( {3x{\rm{ }}-{\rm{ }}10} \right){\rm{ }} = {\rm{ }}0\)

⇔\( x(2x + 1)(3x – 10) = 0\)

Hoặc \(x = 0\), \(x = -\frac{1}{2}\) , \(x = \frac{10}{3}\) 

Vậy phương trình có 3 nghiệm.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan