Bài 39 trang 57 SGK Toán 9 tập 2

Bình chọn:
3.9 trên 30 phiếu

Giải bài 39 trang 57 SGK Toán 9 tập 2. Giải phương trình bằng cách đưa về phương trình tích.

Đề bài

Giải phương trình bằng cách đưa về phương trình tích.

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\);

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\);                     

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\);

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\).

Phương pháp giải - Xem chi tiết

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Hoặc \(A\left( x \right).B\left( x \right).C\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\) 

Lời giải chi tiết

a) \(\left( {3{x^2} - 7x - 10} \right)\left[ {2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3} \right] = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3{x^2} - 7x - 10 = 0\,\left( 1 \right)\\2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3 = 0\left( 2 \right)\end{array} \right.\)

+ Giải phương trình (1).

Ta có \(a - b + c = 3 - \left( { - 7} \right) + \left( { - 10} \right) = 0\) nên phương trình (1) có hai nghiệm phân biệt \(x =  - 1;x = 10.\)

+ Giải phương trình (2)

Ta thấy \(a + b + c = 2 + 1 - \sqrt 5  + \sqrt 5  - 3 = 0\) nên phương trình (2) có hai nghiệm phân biệt \(x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}\)

Vậy phương trình đã cho có bốn nghệm \(x =  - 1;x = 10;x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}.\)

b)

\(\begin{array}{l}{x^3} + 3{x^2} - 2x - 6 = 0\\ \Leftrightarrow {x^2}\left( {x + 3} \right) - 2\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 2} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2 = 0\\x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\x =  - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x =  - \sqrt 2 \\x =  - 3\end{array} \right.\end{array}\)

Vậy phương trình đã cho có ba nghiệm \(x = \sqrt 2 ;x =  - \sqrt 2 ;x =  - 3\) 

c) \(\begin{array}{l}\left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = 0,6{x^2} + x\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = x\left( {0,6x + 1} \right)\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) - x\left( {0,6x + 1} \right) = 0\\ \Leftrightarrow \left( {0,6x + 1} \right)\left( {{x^2} - x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}0,6x + 1 = 0\\{x^2} - x - 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 5}}{3}\\{x^2} - x - 1 = 0\left( * \right)\end{array} \right.\end{array}\)

Phương trình (*) có \(\Delta  = {\left( { - 1} \right)^2} - 4.1\left( { - 1} \right) = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{1 + \sqrt 5 }}{2}\\x = \dfrac{{1 - \sqrt 5 }}{2}\end{array} \right.\)

Vậy phương trình đã cho có ba nghiệm phân biệt \(x =  - \dfrac{5}{3};x = \dfrac{{1 + \sqrt 5 }}{2};x = \dfrac{{1 - \sqrt 5 }}{2}\)

d)

\(\begin{array}{l}{\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\\ \Leftrightarrow {\left( {{x^2} + 2x - 5} \right)^2} - {\left( {{x^2} - x + 5} \right)^2} = 0\\ \Leftrightarrow \left( {{x^2} + 2x - 5 + {x^2} - x + 5} \right)\left( {{x^2} + 2x - 5 - {x^2} + x - 5} \right) = 0\\ \Leftrightarrow \left( {2{x^2} + x} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow x\left( {2x + 1} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\2x + 1 = 0\\3x - 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{1}{2}\\x = \dfrac{{10}}{3}\end{array} \right.\end{array}\)

Vậy phương trình có ba nghiệm \(x = 0;x =  - \dfrac{1}{2};x = \dfrac{{10}}{3}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com