Bài 39 trang 57 SGK Toán 9 tập 2


Giải bài 39 trang 57 SGK Toán 9 tập 2. Giải phương trình bằng cách đưa về phương trình tích.

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải phương trình bằng cách đưa về phương trình tích.

LG a

\((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Hoặc \(A\left( x \right).B\left( x \right).C\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\) 

Lời giải chi tiết:

\(\left( {3{x^2} - 7x - 10} \right)\left[ {2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3} \right] = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3{x^2} - 7x - 10 = 0\,\left( 1 \right)\\2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3 = 0\left( 2 \right)\end{array} \right.\)

+ Giải phương trình (1).

Ta có \(a - b + c = 3 - \left( { - 7} \right) + \left( { - 10} \right) = 0\) nên phương trình (1) có hai nghiệm phân biệt \(x =  - 1;x = 10.\)

+ Giải phương trình (2)

Ta thấy \(a + b + c = 2 + 1 - \sqrt 5  + \sqrt 5  - 3 = 0\) nên phương trình (2) có hai nghiệm phân biệt \(x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}\)

Vậy phương trình đã cho có bốn nghệm \(x =  - 1;x = 10;x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}.\)

LG b

\({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Hoặc \(A\left( x \right).B\left( x \right).C\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\) 

Lời giải chi tiết:

\(\begin{array}{l}{x^3} + 3{x^2} - 2x - 6 = 0\\ \Leftrightarrow {x^2}\left( {x + 3} \right) - 2\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 2} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2 = 0\\x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\x =  - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x =  - \sqrt 2 \\x =  - 3\end{array} \right.\end{array}\)

Vậy phương trình đã cho có ba nghiệm \(x = \sqrt 2 ;x =  - \sqrt 2 ;x =  - 3\) 

LG c

\(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Hoặc \(A\left( x \right).B\left( x \right).C\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\) 

Lời giải chi tiết:

 \(\begin{array}{l}\left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = 0,6{x^2} + x\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = x\left( {0,6x + 1} \right)\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) - x\left( {0,6x + 1} \right) = 0\\ \Leftrightarrow \left( {0,6x + 1} \right)\left( {{x^2} - x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}0,6x + 1 = 0\\{x^2} - x - 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 5}}{3}\\{x^2} - x - 1 = 0\left( * \right)\end{array} \right.\end{array}\)

Phương trình (*) có \(\Delta  = {\left( { - 1} \right)^2} - 4.1\left( { - 1} \right) = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{1 + \sqrt 5 }}{2}\\x = \dfrac{{1 - \sqrt 5 }}{2}\end{array} \right.\)

Vậy phương trình đã cho có ba nghiệm phân biệt \(x =  - \dfrac{5}{3};x = \dfrac{{1 + \sqrt 5 }}{2};x = \dfrac{{1 - \sqrt 5 }}{2}\)

LG d

\({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\)

Phương pháp giải:

Đưa phương trình về dạng phương trình tích \(A\left( x \right).B\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\end{array} \right.\)

Hoặc \(A\left( x \right).B\left( x \right).C\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}A\left( x \right) = 0\\B\left( x \right) = 0\\C\left( x \right) = 0\end{array} \right.\) 

Lời giải chi tiết:

\(\begin{array}{l}{\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\\ \Leftrightarrow {\left( {{x^2} + 2x - 5} \right)^2} - {\left( {{x^2} - x + 5} \right)^2} = 0\\ \Leftrightarrow \left( {{x^2} + 2x - 5 + {x^2} - x + 5} \right)\left( {{x^2} + 2x - 5 - {x^2} + x - 5} \right) = 0\\ \Leftrightarrow \left( {2{x^2} + x} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow x\left( {2x + 1} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\2x + 1 = 0\\3x - 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{1}{2}\\x = \dfrac{{10}}{3}\end{array} \right.\end{array}\)

Vậy phương trình có ba nghiệm \(x = 0;x =  - \dfrac{1}{2};x = \dfrac{{10}}{3}\) 

Loigiaihay.com


Bình chọn:
3.9 trên 36 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài