Bài 34 trang 56 SGK Toán 9 tập 2


Giải bài 34 trang 56 SGK Toán 9 tập 2. Giải các phương trình trùng phương:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Giải các phương trình trùng phương:

LG a

\({x^4}-{\rm{ }}5{x^2} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\({x^4}-{\rm{ }}5{x^2} + {\rm{ }}4{\rm{ }} = {\rm{ }}0\)

Đặt \({x^2} = {\rm{ }}t{\rm{ }} \ge {\rm{ }}0\), ta có: \({t^2}-{\rm{ }}5t{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}0; a + b + c = 1 + (-5) + 4 = 0 , \)

\({\rm{ }}{t_1} = {\rm{ }}1,{\rm{ }}{t_2} = {\rm{ }}4\) (thỏa mãn)

Với t = 1 ta có: \({x^2} = 1 \Leftrightarrow x =  \pm 1\)

Với t = 4 ta có: \({x^2} = 4 \Leftrightarrow x =  \pm 2\)

Vậy phương trình đã cho có 4 nghiệm phân biệt \(x=\pm 1;x=\pm2\)

LG b

\(2{x^4}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(2{x^4}-{\rm{ }}3{x^2}-{\rm{ }}2{\rm{ }} = {\rm{ }}0\).

Đặt \({x^2} = {\rm{ }}t{\rm{ }} \ge {\rm{ }}0\), ta có: \(2{t^2}{\rm{  - }}3t{\rm{  - }}2 = 0\) (2) 

\(\Delta  = {\left( { - 3} \right)^2} - 4.2.\left( { - 2} \right) = 25 > 0 \Rightarrow \sqrt \Delta   = 5\)

Khi đó phương trình (2) có 2 nghiệm phân biệt là: \({t_1} = \dfrac{{ - \left( { - 3} \right) - 5}}{{2.2}} = \dfrac{{ - 1}}{2}\) (loại); \({t_2} = \dfrac{{ - \left( { - 3} \right) + 5}}{{2.2}} = 2\left( {tm} \right)\) 

Với \(t = 2 \Leftrightarrow {x^2} = 2 \Leftrightarrow x =  \pm \sqrt 2 \)

Vậy phương trình đã cho có 2 nghiệm phân biệt \(x =  \pm \sqrt 2 \)

LG c

\(3{x^4} + {\rm{ }}10{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Phương pháp giải phương trình trùng phương \(a{x^4} + b{x^2} + c = 0\left( {a \ne 0} \right)\)

Đặt \({x^2} = t\left( {t \ge 0} \right)\) khi đó phương trình đã cho trở thành \(a{t^2} + bt + c = 0\) giải phương trình bậc 2 ẩn t sau đó đối chiếu với điều kiện \(t \ge 0\) rồi tìm \(x\)

Lời giải chi tiết:

\(3{x^4} + {\rm{ }}10{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

Đặt \({x^2} = {\rm{ }}t{\rm{ }} \ge {\rm{ }}0\), ta có: \(3{t^2} + 10t + 3 = 0\) (3)

\(\Delta ' = {5^2} - 3.3 = 16 > 0 \Rightarrow \sqrt {\Delta '}  = 4\)

Khi đó phương trình (3) sẽ có 2 nghiệm phân biệt là:

\(t{ _1} = \dfrac{{ - 5 - 4}}{3} =  - 3\) (loại)

\(t{_1} = \dfrac{{ - 5 +4}}{3} =  - \dfrac{1}{3}\) (loại)

Phương trình vô nghiệm.

Loigiaihay.com


Bình chọn:
4.4 trên 62 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài