Bài 36 trang 56 SGK toán 9 tập 2


Giải bài 36 trang 56 SGK toán 9 tập 2. Giải các phương trình:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

 Giải các phương trình:

LG a

\((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\)

Phương pháp giải:

Phương pháp giải phương trình dạng tích: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Lời giải chi tiết:

\((3{x^2}-{\rm{ }}5x{\rm{ }} + {\rm{ }}1)({x^2}-{\rm{ }}4){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow \left[ \matrix{
3{x^2} - 5x + 1 = 0\, (1) \hfill \cr 
{x^2}-{\rm{ }}4{\rm{ }} = {\rm{ }}0 \, (2) \hfill \cr} \right. \)

+) Giải phương trình (1) ta được:

\(\Delta  = {\left( { - 5} \right)^2} - 4.3.1 = 13 > 0\)

Phương trình có 2 nghiệm phân biệt là: \({x_1} = \dfrac{{5 - \sqrt {13} }}{6};{x_2} = \dfrac{{5 + \sqrt {13} }}{6}\)

+) Giải phương trình (2) ta được: \({x^2} = 4 \Leftrightarrow x =  \pm 2\)

Vậy phương trình đã cho có 4 nghiệm phân biệt \({x_1} = \dfrac{{5 - \sqrt {13} }}{6};{x_2} = \dfrac{{5 + \sqrt {13} }}{6};{x_3} =  - 2;{x_4} = 2\)

LG b

\({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)

Phương pháp giải:

Phương pháp giải phương trình dạng tích: \(A.B = 0 \Leftrightarrow \left[ \begin{array}{l}
A = 0\\
B = 0
\end{array} \right.\)

Lời giải chi tiết:

\({(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4)^2}-{\rm{ }}{\left( {2x{\rm{ }}-{\rm{ }}1} \right)^2} = {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }} + {\rm{ }}2x{\rm{ }}-{\rm{ }}1)(2{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}4{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1){\rm{ }} \)\(= {\rm{ }}0\)

\( \Leftrightarrow {\rm{ }}(2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5)(2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow \left[ \matrix{
2{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}5{\rm{ }} = {\rm{ }}0  (3) \hfill \cr 
2{x^2}-{\rm{ }}x{\rm{ }}-{\rm{ }}3{\rm{ }} = {\rm{ }}0 \hfill  (4) \cr} \right.\)

giải phương trình (3) ta có: \(a + b + c = 2 + 3 + (-5) = 0\) nên có hai nghiệm \({x_1} = {\rm{ }}1;{\rm{ }}{x_2} = {\rm{ }} - 2,5;\)

giải phương trình (4) ta có: \(a - b + c = 2 - (-1) + (-3) = 0\) nên có hai nghiệm  \({\rm{ }}{x_3} = {\rm{ }} - 1;{\rm{ }}{x_4} = {\rm{ }}1,5\)

Vậy phương trình có tập nghiệm \(S=\{1;-2,5;-1;1,5\}\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.1 trên 62 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài