Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 2 - Chương 1 - Hình học 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Dựng góc nhọn \(α\) biết \(\tan \alpha  = {4 \over 3}\) (vẽ hình và nêu cách dựng).

Bài 2. Cho \(∆ABC\) vuông tại A, \(AB = 6cm\) và \(\widehat B = \alpha .\) Biết \(\tan \alpha  = {5 \over {12}},\) hãy tính AC, BC.

LG bài 1

Phương pháp giải:

Sử dụng: \(\tan \alpha  = \dfrac{{cạnh\, đối}}{{cạnh\,kề}}\)

Lời giải chi tiết:

Cách dựng :

        -  Dựng góc vuông \(xAy\).

        -  Lấy B thuộc tia Ax sao cho \(AB = 4.\)

        -  Lấy C thuộc tia Ay sao cho  \(AC = 3.\)

        -  Nối B với C.

Khi đó \(\widehat {BCA} = \alpha \) góc cần dựng.

Chứng minh:

Xét tam giác ABC vuông tại A có \(\tan\alpha =\dfrac{AB}{AC}=\dfrac{4}3\) thỏa mãn yêu cầu đề bài.

LG bài 2

Phương pháp giải:

Sử dụng: \(\tan \alpha  = \dfrac{{cạnh\, đối}}{{cạnh\,kề}}\)

Và định lý Pytago: Trong tam giác vuông, bình phương cạnh huyền bằng tổng bình phương hai cạnh góc vuông.

Lời giải chi tiết:

Xét tam giác ABC vuông tại A, ta có: \(\tan \alpha  = {{AC} \over {AB}} = {5 \over {12}}\)

hay \({{AC} \over 6} = {5 \over {12}} \Rightarrow AC = {{6.5} \over {12}} = 2,5\,\left( {cm} \right)\)

Xét tam giác ABC vuông tại A, theo định lý Pytago ta có:

\(BC = \sqrt {A{B^2} + A{C^2}}  \)\(\;= \sqrt {{6^2} + {{\left( {2,5} \right)}^2}}  = 6,5\,\left( {cm} \right)\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>  Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài