Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Hình học 9


Giải Đề kiểm tra 15 phút - Đề số 3 - Bài 2 - Chương 1 - Hình học 9

Đề bài

Bài 1. Cho \(∆ABC\) vuông tại A và \(\widehat B = \alpha .\) Chứng minh rằng:

a. \({\sin ^2}\alpha  + {\cos ^2}\alpha  = 1\)

b. \(\tan \alpha  = {{\sin \alpha } \over {\cos \alpha }}\)

Bài 2. Hãy sắp xếp các tỉ số lượng giác sau đây theo thứ tự tăng dần (không dùng bảng số và máy tính) :

a. \(\sin 40^\circ ,\,\cos 28^\circ ,\,\sin 65^\circ ,\,\cos 88^\circ \)

b. \(\tan 65^\circ ,\cot 42^\circ ,\tan 76^\circ ,\cot 27^\circ .\)

Phương pháp giải - Xem chi tiết

1. Sử dụng:

\(\sin \alpha  = \dfrac{{cạnh\,đối}}{{cạnh\,huyền}};\cos \alpha  = \dfrac{{cạnh\,kề}}{{cạnh\,huyền}}\)

2. Sử dụng:

Nếu hai góc phụ nhau thì sin góc này bằng côsin góc kia, tang góc này bằng côtang góc kia.

Nếu \(\alpha<\beta\) thì \(\sin \alpha<\sin \beta;\) \(\tan \alpha<\tan \beta\)

Lời giải chi tiết

Bài 1.

a. Đặt \(AB=c,AC=b,BC=a\) 

Vì tam giác ABC vuông tại A nên theo định lý Pytago ta có: \(a^2=b^2+c^2\)

Theo định nghĩa tỉ số lượng giác của góc nhọn, ta có: \(\sin \alpha  = {b \over a} \Rightarrow {\sin ^2}\alpha  = {{{b^2}} \over {{a^2}}}\) 

\(\cos \alpha  = {c \over a} \Rightarrow {\cos ^2}\alpha  = {{{c^2}} \over {{a^2}}}\)

Do đó: \({\sin ^2}\alpha  + {\cos ^2}\alpha  = {{{b^2} + {c^2}} \over {{a^2}}} = {{{a^2}} \over {{a^2}}} = 1\)

b. \(\tan \alpha  = {b \over c} = {b \over c}:{c \over a} = {{\sin \alpha } \over {\cos \alpha }}\)

Bài 2. a. Ta có:

\(\eqalign{  & \cos 28^\circ  = \sin \left( {90^\circ  - 28^\circ } \right) = \sin 62^\circ   \cr  & \cos 88^\circ  = \sin \left( {90^\circ  - 88^\circ } \right) = \sin 2^\circ  \cr} \)

Mà \(\sin 2^\circ  < \sin 40^\circ  < \sin 62^\circ  < \sin 65^\circ \) (góc tăng thì sin tăng)

\( \Rightarrow \cos 88^\circ  < \sin 40^\circ  < \cos 28^\circ \)\(\, < \sin 65^\circ .\)

b. Ta có:

\(\eqalign{  & \cot 42^\circ  = \tan \left( {90^\circ  - 42^\circ } \right) = \tan 48^\circ   \cr  & \cot 27^\circ  = \tan \left( {90^\circ  - 27^\circ } \right) = \tan 63^\circ  \cr} \)

Mà \( \tan 48^\circ  < \tan 63^\circ  < \tan 65^\circ  < \tan 76^\circ \)

\(\Rightarrow \cot 42^\circ  < \cot 27^\circ  < \tan 65^\circ\)\(\,  < \tan 76^\circ  \)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài