Bài 11 trang 76 SGK Toán 9 tập 1>
Đề bài
Cho tam giác \(ABC\) vuông tại \(C\), trong đó \(AC=0,9m\), \(BC=1,2m\). Tính các tỷ số lượng giác của góc \(B\), từ đó suy ra các tỷ số lượng giác của góc \(A\).
Video hướng dẫn giải
Phương pháp giải - Xem chi tiết
+) Dùng định lí Pytago để tính độ dài cạnh huyền.
+) Dựa vào định nghĩa tỉ số lượng giác để tính các tỉ số lượng giác của góc \(B\).
\(\sin \alpha =\dfrac{cạnh\ đối}{cạnh\ huyền};\) \(\cos \alpha = \dfrac{cạnh\ kề}{cạnh\ huyền}\);
\(\tan \alpha = \dfrac{cạnh\ đối}{cạnh\ kề};\) \(\cot \alpha =\dfrac{cạnh\ kề}{cạnh\ đối}.\)
+) Dựa vào định lí về tỉ số lượng giác của hai góc phụ nhau: " Nếu hai góc phụ nhau thì sin góc này bằng cosin góc kia, tan góc này bằng cotang góc kia" để từ các tỉ số lượng giác của góc \(B\) tính tỉ số lượng giác của góc \(A\).
Lời giải chi tiết
Xét \(\Delta{ABC}\) vuông tại \(C\), áp dụng định lí Pytago, ta có:
\(AB^2=CB^2+AC^2\)
\(\Leftrightarrow AB^2=0,9^2+1,2^2\)
\(\Leftrightarrow AB^2=0,81+1,44=2,25\)
\(\Leftrightarrow AB=\sqrt{2,25}=1,5m\)
Vì \(\Delta{ABC}\) vuông tại \(C\) nên góc \(B\) và \(A\) là hai góc phụ nhau. Do vậy, ta có:
\(\sin A=\cos B=\dfrac{BC}{AB}=\dfrac{1,2}{1,5}=\dfrac{4}{5}\)
\(\cos A=\sin B=\dfrac{AC}{AB} =\dfrac{0,9}{1,5}=\dfrac{3}{5}\)
\(\tan A=\cot B=\dfrac{BC}{AC}=\dfrac{1,2}{0,9}=\dfrac{4}{3}\)
\(\cot A=\tan B=\dfrac{AC}{BC}=\dfrac{0,9}{1,2}=\dfrac{3}{4}\)
Nhận xét: Với hai góc phụ nhau, ta có sin góc này bằng cosin góc kia, tan góc này bằng cotan góc kia.


- Bài 12 trang 76 SGK Toán 9 tập 1
- Bài 13 trang 77 SGK Toán 9 tập 1
- Bài 14 trang 77 SGK Toán 9 tập 1
- Bài 15 trang 77 SGK Toán 9 tập 1
- Bài 16 trang 77 SGK Toán 9 tập 1
>> Xem thêm
Các bài khác cùng chuyên mục
- Lý thuyết góc nội tiếp
- Lý thuyết Hệ số góc của đường thẳng y = ax + b (a ≠ 0)
- Lý thuyết Hệ thức Vi-ét và ứng dụng.
- Lý thuyết về đường kính và dây của đường tròn
- Lý thuyết về tính chất của hai tiếp tuyến cắt nhau.
- Bài 27 trang 53 SGK Toán 9 tập 2
- Lý thuyết diện tích hình tròn, hình quạt tròn
- Lý thuyết độ dài đường tròn, cung tròn
- Lý thuyết về dấu hiệu nhận biết tiếp tuyến của đường tròn
- Lý thuyết Công thức nghiệm của phương trình bậc hai