Đề kiểm tra 15 phút - Đề số 1 - Bài 7 - Chương 1 - Đại số 8


Giải Đề kiểm tra 15 phút - Đề số 1 - Bài 7 - Chương 1 - Đại số 8

GÓP Ý HAY - NHẬN NGAY QUÀ CHẤT

Gửi góp ý cho Loigiaihay.com và nhận về những phần quà hấp dẫn

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1. Phân tích các đa thức sau thành nhân tử:

a) \({x^4} + 2{x^2}y + {y^2}\)  

c) \(\left( {8{a^3} - 27{b^3}} \right) - 2a\left( {4{a^2} - 9{b^2}} \right).\)

b) \({\left( {2a + b} \right)^2} - {\left( {2b + a} \right)^2}\)

Bài 2. Tìm x, biết : \({x^2} - 36 = 0.\)

Bài 3. Chứng minh rằng \({\left( {5n - 2} \right)^2} - {\left( {2n - 5} \right)^2}\) luôn chia hết cho 21, với mọi giá trị nguyên của n.

LG bài 1

Phương pháp giải:

Sử dụng các hằng đẳng thức: 

\({\left( {A + B} \right)^2} = {A^2} + 2AB + {B^2}\)

\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

\({A^3} - {B^3} = \left( {A - B} \right)({A^2} + AB + {B^2})\)

Lời giải chi tiết:

a) \({x^4} + 2{x^2}y + {y^2}\) 

\( = {\left( {{x^2}} \right)^2} + 2{x^2}y + {y^2}\)

\( = \left( {{x^2} + {y}} \right)^2.\)

b) \({\left( {2a + b} \right)^2} - {\left( {2b + a} \right)^2} \)

\(= \left[ {\left( {2a + b} \right) + \left( {2b + a} \right)} \right]\left[ {\left( {2a + b} \right) - \left( {2b + a} \right)} \right]\)

\( = \left( {3a + 3b} \right)\left( {a - b} \right) = 3\left( {a + b} \right)\left( {a - b} \right).\)

c) \(\left( {8{a^3} - 27{b^3}} \right) - 2a\left( {4{a^2} - 9{b^2}} \right)\)

\( = \left( {2a - 3b} \right)\left( {4{a^2} + 6ab + 9{b^2}} \right) \)\(- 2a\left( {2a - 3b} \right)\left( {2a + 3b} \right)\) 

\( = \left( {2a - 3b} \right)\left( {4{a^2} + 6ab + 9{b^2} - 4{a^2} - 6ab} \right)\)

\(= 9{b^2}\left( {2a - 3b} \right).\)

LG bài 2

Phương pháp giải:

Sử dụng: 

\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Lời giải chi tiết:

\({x^2} - 36 = 0\)

\(\Rightarrow \left( {x + 6} \right)\left( {x - 6} \right) = 0\)

\( \Rightarrow x + 6 = 0\) hoặc \(x - 6 = 0 \)

\(\Rightarrow x =  - 6\) hoặc \(x = 6.\)

LG bài 3

Phương pháp giải:

Sử dụng:

\({A^2} - {B^2} = \left( {A + B} \right)\left( {A - B} \right)\)

Lời giải chi tiết:

Ta có:

\({\left( {5n - 2} \right)^2} - {\left( {2n - 5} \right)^2} \)

\(= \left( {5n - 2 + 2n - 5} \right)\left( {5n - 2 - 2n + 5} \right)\)

\( = \left( {7n - 7} \right)\left( {3n + 3} \right) \)

\(= 21\left( {n - 1} \right)\left( {n + 1} \right)\; \vdots\; 21\) , với mọi n thuộc \(\mathbb Z\)

Loigiaihay.com


Bình chọn:
4.3 trên 30 phiếu

>> Xem thêm

Luyện Bài Tập Trắc nghiệm Toán 8 - Xem ngay

Tham Gia Group Dành Cho Lớp 8 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí