Đề kiểm 15 phút - Đề số 2 - Bài 3 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm 15 phút - Đề số 2 - Bài 3 - Chương 4 - Đại số 9

Đề bài

Bài 1: Tìm a, b, c trong mỗi phương trình sau :

a)\(\left( {x - 2} \right)\left( {x + 3} \right) = 0\)                            

b) \(\left( {2x - 3} \right)\left( {x + 1} \right) = 0.\)

Bài 2: Cho phương trình : \({x^2} + mx - 35 = 0.\)

a) Tìm m, biết rằng phương trình có một nghiệm \(x = 7.\)

b) Giải phương trình với m vừa tìm được.

Bài 3: Tìm m để phương trình \({x^2} + m = 0\) có nghiệm.

Lời giải chi tiết

Bài 1: a) Ta có : \(\left( {x - 2} \right)\left( {x + 3} \right) = 0 \)

\(\Leftrightarrow {x^2} + 3x - 2x - 6 = 0\)

\( \Leftrightarrow {x^2} + x - 6 = 0\)

Vậy: \(a = 1;   b = 1;    c = − 6.\)

b) Ta có : \(\left( {2x - 3} \right)\left( {x + 1} \right) = 0\)

\(\Leftrightarrow 2{x^2} + 2x - 3x - 3 = 0\)

\( \Leftrightarrow 2{x^2} - x - 3 = 0\)

Vậy: \(a = 2;   b = − 1;   c = − 3.\)

Bài 2: a) Vì \(x = 7\) là một nghiệm của phương trình, nên ta có :

\({7^2} + 7m - 35 = 0 \Leftrightarrow m =  - 2.\)

b) Với \(m = − 2\), phương trình có dạng : \({x^2} - 2x - 35 = 0\)

\( \Leftrightarrow {x^2} - 2x + 1 - 36 = 0 \)

\(\Leftrightarrow {\left( {x - 1} \right)^2} = 36\)

\( \Leftrightarrow \left| {x - 1} \right| = 6 \Leftrightarrow \left[ \matrix{  x - 1 = 6 \hfill \cr  x - 1 =  - 6 \hfill \cr}  \right.\)

\(\Leftrightarrow \left[ \matrix{  x = 7 \hfill \cr  x =  - 5. \hfill \cr}  \right.\)

Vậy phương trình có hai nghiệm : \({x_1} = 7;{x_2} =  - 5.\)

Bài 3: Ta có : \({x^2} + m = 0 \Leftrightarrow {x^2} =  - m.\) Vì \({x^2} \ge 0\), nên  phương trình có nghiệm khi và chỉ khi \( - m \ge 0 \Leftrightarrow m \le 0.\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com