Bài 12 trang 42 SGK Toán 9 tập 2


Giải bài 12 trang 42 SGK Toán 9 tập 2. Giải các phương trình sau:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Giải các phương trình sau:

LG a

\({x^2} - 8 = 0\)

Phương pháp giải:

Biến đồi phương trình để sử dụng: Với mọi \(a \ge 0\), ta có: \(x^2=a \Leftrightarrow x= \pm \sqrt a\)

Lời giải chi tiết:

Ta có:

\({x^2} - 8 = 0 \Leftrightarrow {x^2} = 8 \Leftrightarrow x =  \pm \sqrt 8 \Leftrightarrow x= \pm 2\sqrt 2 \).

Vậy phương trình đã cho có hai nghiệm \(x= \pm 2 \sqrt 2\).

LG b

\(5{x^2} - 20 = 0\)

Phương pháp giải:

Biến đồi phương trình để sử dụng: Với mọi \(a \ge 0\), ta có: \(x^2=a \Leftrightarrow x= \pm \sqrt a\)

Lời giải chi tiết:

Ta có:

\(5{x^2} - 20 = 0 \Leftrightarrow 5{x^2} = 20 \Leftrightarrow {x^2} = \dfrac{20}{5} \)

\(\Leftrightarrow x^2 = 4 \Leftrightarrow x=\pm \sqrt 4 \Leftrightarrow x =\pm 2\).

Vậy phương trình đã cho có hai nghiệm \(x= \pm 2\).

LG c

\(0,4{x^2} + 1 = 0\)

Phương pháp giải:

Biến đồi phương trình để sử dụng: Với mọi \(a \ge 0\), ta có: \(x^2=a \Leftrightarrow x= \pm \sqrt a\)

Lời giải chi tiết:

Ta có:

\(0,4{x^2} + 1 = 0 \Leftrightarrow 0,4{x^2} =  - 1 \\\Leftrightarrow {x^2} =  - \dfrac{1}{0,4}\Leftrightarrow {x^2} =  - 2,5\) (vô lý vì \(x^2 \ge 0\) với mọi \(x\))

Vậy phương trình đã cho vô nghiệm.

LG d

\(2{x^2} + \sqrt 2 x = 0\)

Phương pháp giải:

Đưa phương trình về dạng tích \(a.b =0 \Leftrightarrow a=0\) hoặc \(b=0\). 

Chú ý: với mọi \(x\), ta luôn có \(x^2 \ge 0\).

Lời giải chi tiết:

Ta có: 

\(2{x^2} + \sqrt 2 x = 0 \Leftrightarrow x(2x + \sqrt 2 ) = 0\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
2x + \sqrt 2=0 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
2x =- \sqrt 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x =- \dfrac{\sqrt 2}{2} \hfill \cr} \right.\)

Phương trình có hai nghiệm là: \(x = 0;\ x =   \dfrac{-\sqrt 2}{2}.\)

LG e

\( - 0.4{x^2} + 1,2x = 0\)

Phương pháp giải:

Đưa phương trình về dạng tích \(a.b =0 \Leftrightarrow a=0\) hoặc \(b=0\). 

Chú ý: với mọi \(x\), ta luôn có \(x^2 \ge 0\).

Lời giải chi tiết:

Ta có:

\( - 0,4{x^2} + 1,2x = 0 \Leftrightarrow  - 4{x^2} + 12x = 0\)

\(\Leftrightarrow  - 4x(x - 3) = 0\)

\( \Leftrightarrow \left[ \matrix{
-4x = 0 \hfill \cr 
x - 3=0 \hfill \cr} \right.\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x =3 \hfill \cr} \right.\)

Vậy phương trình có hai  nghiệm là: \({x} = 0,\ {x} = 3\) 

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 75 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài