Bài 12 trang 42 SGK Toán 9 tập 2

Bình chọn:
4 trên 56 phiếu

Giải bài 12 trang 42 SGK Toán 9 tập 2. Giải các phương trình sau:

Đề bài

Giải các phương trình sau:

a) \({x^2} - 8 = 0\)                    b) \(5{x^2} - 20 = 0\) ;                   

c) \(0,4{x^2} + 1 = 0\);             d) \(2{x^2} + \sqrt 2 x = 0\);        

e) \( - 0.4{x^2} + 1,2x = 0\).

Phương pháp giải - Xem chi tiết

a) b) c) Biến đồi phương trình để sử dụng: Với mọi \(a \ge 0\), ta có: \(x^2=a \Leftrightarrow x= \pm \sqrt a\) .

d) e) Đưa phương trình về dạng tích \(a.b =0 \Leftrightarrow a=0\) hoặc \(b=0\). 

Chú ý: với mọi \(x\), ta luôn có \(x^2 \ge 0\).

Lời giải chi tiết

a) Ta có:

\({x^2} - 8 = 0 \Leftrightarrow {x^2} = 8 \Leftrightarrow x =  \pm \sqrt 8 \Leftrightarrow x= \pm 2\sqrt 2 \).

Vậy phương trình đã cho có hai nghiệm \(x= \pm 2 \sqrt 2\).

b) Ta có:

\(5{x^2} - 20 = 0 \Leftrightarrow 5{x^2} = 20 \Leftrightarrow {x^2} = \dfrac{20}{5} \)

\(\Leftrightarrow x^2 = 4 \Leftrightarrow x=\pm \sqrt 4 \Leftrightarrow x =\pm 2\).

Vậy phương trình đã cho có hai nghiệm \(x= \pm 2\).

c) Ta có:

\(0,4{x^2} + 1 = 0 \Leftrightarrow 0,4{x^2} =  - 1 \\\Leftrightarrow {x^2} =  - \dfrac{1}{0,4}\Leftrightarrow {x^2} =  - 2,5\) (vô lý vì \(x^2 \ge 0\) với mọi \(x\))

Vậy phương trình đã cho vô nghiệm. 

d) Ta có: 

\(2{x^2} + \sqrt 2 x = 0 \Leftrightarrow x(2x + \sqrt 2 ) = 0\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr
2x + \sqrt 2=0 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
2x =- \sqrt 2 \hfill \cr} \right.\)

\(\Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x =- \dfrac{\sqrt 2}{2} \hfill \cr} \right.\)

Phương trình có hai nghiệm là: \(x = 0;\ x =   \dfrac{-\sqrt 2}{2}.\)

e) Ta có:

\( - 0,4{x^2} + 1,2x = 0 \Leftrightarrow  - 4{x^2} + 12x = 0\)

\(\Leftrightarrow  - 4x(x - 3) = 0\)

\( \Leftrightarrow \left[ \matrix{
-4x = 0 \hfill \cr
x - 3=0 \hfill \cr} \right.\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x =3 \hfill \cr} \right.\)

Vậy phương trình có hai  nghiệm là: \({x} = 0,\ {x} = 3\) 

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com