Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 4 - Đại số 9

Bình chọn:
4.9 trên 7 phiếu

Giải Đề kiểm tra 15 phút - Đề số 5 - Bài 3 - Chương 4 - Đại số 9

Đề bài

Bài 1: Cho phương trình \({x^2} + \left( {1 + \sqrt 3 } \right)x + \sqrt 3  = 0\). Số nào sau đây là nghiệm cảu phương trình: \( x = 1; x = − 1;\) \(x = \sqrt 3 \); \(x =  - \sqrt 3 .\)

Bài 2: Giải phương trình : \({x^2} - 5x + 7 = 0.\)

Bài 3: Tìm tọa độ giao điểm của đồ thị hai hàm số sau :

\(y = 4{x^2}\) và \(y = 4x + 3.\)

Lời giải chi tiết

Bài 1: Thay các giá trị \(x = 1; x = − 1\); \(x = \sqrt 3 \); \(x =  - \sqrt 3 \) vào phương trình đã cho, ta nhận thấy

\(x = − 1\) và \(x =  - \sqrt 3 \)là nghiệm của phương trình. ( Chẳng hạn : với \(x =  - \sqrt 3 \), ta có : \({\left( { - \sqrt 3 } \right)^2} + \left( {1 + \sqrt 3 } \right)\left( { - \sqrt 3 } \right) + \sqrt 3 \)\( = 0\)

\( \Leftrightarrow 3 - \sqrt 3  - 3 + \sqrt 3  = 0\) ( luôn đúng). Vậy \(x =  - \sqrt 3 \) là một nghiệm)

Bài 2: \({x^2} - 5x + 7 = 0\)

\(\Leftrightarrow {x^2} - 2.{5 \over 4}x + {{25} \over 4} - {{25} \over 4} + 7 = 0\)

\( \Leftrightarrow {\left( {x - {5 \over 2}} \right)^2} + {3 \over 4} = 0\)

Phương trình vô nghiệm vì \({\left( {x - {5 \over 2}} \right)^2} \ge 0\), với mọi \(x \in \mathbb R\) nên \({\left( {x - {5 \over 2}} \right)^2} + {3 \over 4} > 0\), với \(x \in \mathbb R\).

Bài 3: Phương trình hoành độ giao điểm của hai đồ thị :

\(4{x^2} = 4x + 3 \Leftrightarrow 4{x^2} - 4x = 3\)

\(\Leftrightarrow 4{x^2} - 4x + 1 = 3 + 1\)

\( \Leftrightarrow {\left( {2x - 1} \right)^2} = 4 \Leftrightarrow \left| {2x - 1} \right| = 2\)

\( \Leftrightarrow \left[ \matrix{  2x - 1 = 2 \hfill \cr  2x - 1 =  - 2 \hfill \cr}  \right. \Leftrightarrow \left[ \matrix{  x = {3 \over 2} \hfill \cr  x =  - {1 \over 2} \hfill \cr}  \right.\)

Vậy tọa độ giao điểm là : \(\left( {{3 \over 2};9} \right)\) và \(\left( { - {1 \over 2};1} \right).\)

 Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>>Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa  cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com

Góp ý Loigiaihay.com, nhận quà liền tay