Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 4 - Đại số 9


Giải Đề kiểm tra 15 phút - Đề số 2 - Bài 3 - Chương 4 - Đại số 9

Lựa chọn câu để xem lời giải nhanh hơn

Đề bài

Bài 1: Tìm a, b, c trong mỗi phương trình sau :

a)\(\left( {x - 2} \right)\left( {x + 3} \right) = 0\)                            

b) \(\left( {2x - 3} \right)\left( {x + 1} \right) = 0.\)

Bài 2: Cho phương trình : \({x^2} + mx - 35 = 0.\)

a) Tìm m, biết rằng phương trình có một nghiệm \(x = 7.\)

b) Giải phương trình với m vừa tìm được.

Bài 3: Tìm m để phương trình \({x^2} + m = 0\) có nghiệm.

LG bài 1

Phương trình bậc hai tổng quát có dạng: 

\(\) \[a{x^2} + bx + c = 0\left( {a \ne 0} \right)\] 

Chú ý: Ta phải đưa phương trình về phương trình bậc hai tổng quát rồi mới suy ra hệ số a,b,c

Lời giải chi tiết:

Bài 1: a) Ta có : \(\left( {x - 2} \right)\left( {x + 3} \right) = 0 \)

\(\Leftrightarrow {x^2} + 3x - 2x - 6 = 0\)

\( \Leftrightarrow {x^2} + x - 6 = 0\)

Vậy: \(a = 1;   b = 1;    c = − 6.\)

b) Ta có : \(\left( {2x - 3} \right)\left( {x + 1} \right) = 0\)

\(\Leftrightarrow 2{x^2} + 2x - 3x - 3 = 0\)

\( \Leftrightarrow 2{x^2} - x - 3 = 0\)

Vậy: \(a = 2;   b = − 1;   c = − 3.\)

LG bài 2

Phương pháp giải:

a. Thay x=7 vào phương trình ta tìm được m

b. Thay m vào phương trình ban đầu ta được phương trình bậc hai, giải ra ta tìm được nghiệm và KL

Lời giải chi tiết:

Bài 2: a) Vì \(x = 7\) là một nghiệm của phương trình, nên ta có :

\({7^2} + 7m - 35 = 0 \Leftrightarrow m =  - 2.\)

b) Với \(m = − 2\), phương trình có dạng : \({x^2} - 2x - 35 = 0\)

\( \Leftrightarrow {x^2} - 2x + 1 - 36 = 0 \)

\(\Leftrightarrow {\left( {x - 1} \right)^2} = 36\)

\( \Leftrightarrow \left| {x - 1} \right| = 6 \Leftrightarrow \left[ \matrix{  x - 1 = 6 \hfill \cr  x - 1 =  - 6 \hfill \cr}  \right.\)

\(\Leftrightarrow \left[ \matrix{  x = 7 \hfill \cr  x =  - 5. \hfill \cr}  \right.\)

Vậy phương trình có hai nghiệm : \({x_1} = 7;{x_2} =  - 5.\)

LG bài 3

Phương pháp giải:

Chuyển m sang vế phải ta đánh giá dấu của vế trái suy ra các giá trị của m

Lời giải chi tiết:

Bài 3: Ta có : \({x^2} + m = 0 \Leftrightarrow {x^2} =  - m.\) Vì \({x^2} \ge 0\), nên  phương trình có nghiệm khi và chỉ khi \( - m \ge 0 \Leftrightarrow m \le 0.\)

 Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.9 trên 7 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài