Bài 11 trang 42 SGK Toán 9 tập 2

Bình chọn:
4.2 trên 52 phiếu

Giải bài 11 trang 42 SGK Toán 9 tập 2. Đưa các phương trình sau về dạng

Đề bài

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số \(a, b, c\):

a) \(5{x^2} + 2x = 4 - x\)             

b) \({3 \over 5}{x^2} + 2x - 7 = 3x + {1 \over 2}\)

c) \(2{x^2} + x - \sqrt 3  = \sqrt 3 x + 1\);              

d) \(2{x^2} + {m^2} = 2(m - 1)x\), \(m\) là một hằng số.

Phương pháp giải - Xem chi tiết

+) Khai triển rồi đưa các số hạng về trái, vế phải bằng \(0\).

+) Xác định các hệ số \(a,\ b,\ c\) của phương trình bậc hai \(ax^2+bx+x=0\).

Lời giải chi tiết

a) Ta có:

\(5{x^2} + 2x = 4 - x\)

\(\Leftrightarrow 5{x^2} + 2x - 4 + x=0\)

\(\Leftrightarrow 5{x^2} + 3x - 4 =0\)

\(\Leftrightarrow 5{x^2} + 3x +(- 4) =0\)

Suy ra \(a = 5,\ b = 3,\ c =  - 4.\)

b) Ta có:

\(\dfrac{3 }{5}{x^2} + 2x - 7 = 3x + \dfrac{1}{2}\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} +2 x -7-3x-\dfrac{1}{2}= 0\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} -x -\dfrac{15}{2}= 0\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} +(-1).x +{\left(-\dfrac{15}{2} \right)}= 0\)

Suy ra \(a =   \dfrac{3 }{5},\ b =  - 1,\ c =  - \dfrac{15}{2}\).

c) Ta có:

\(2{x^2} + x - \sqrt 3  = \sqrt 3 x + 1\)

\( \Leftrightarrow 2{x^2} + x - \sqrt 3   - \sqrt 3 x -1  = 0\)

\( \Leftrightarrow 2{x^2} + (1-\sqrt 3)x + (-\sqrt 3  -1)  = 0\)

Suy ra \(a =  2,\ b = 1 - \sqrt 3 ,\ c =   - \sqrt 3  -1.\)

d) Ta có:

\(2{x^2} + {m^2} = 2(m - 1)x\)

\(\Leftrightarrow 2{x^2} +m^2-2(m-1)x=0 \)

\(\Leftrightarrow 2{x^2} -2(m-1)x+m^2=0 \)

\(\Leftrightarrow 2{x^2} + [-2(m-1)]x+m^2=0 \)

Suy ra \(a =  2,\ b =  - 2(m - 1),\ c = {m^2}.\)

loigiaihay.com

Đã có lời giải Sách bài tập - Toán lớp 9 và Bài tập nâng cao - Xem ngay

>>Học trực tuyến lớp 9, luyện vào 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan