Bài 11 trang 42 SGK Toán 9 tập 2


Giải bài 11 trang 42 SGK Toán 9 tập 2. Đưa các phương trình sau về dạng

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Đưa các phương trình sau về dạng \(a{x^2} + bx + c = 0\) và chỉ rõ các hệ số \(a, b, c\):

LG a

\(5{x^2} + 2x = 4 - x\)

Phương pháp giải:

+) Khai triển rồi đưa các số hạng về trái để vế phải bằng \(0\).

+) Xác định các hệ số \(a,\ b,\ c\) của phương trình bậc hai \(ax^2+bx+c=0\). 

Lời giải chi tiết:

Ta có:

\(5{x^2} + 2x = 4 - x\)

\(\Leftrightarrow 5{x^2} + 2x - 4 + x=0\)

\(\Leftrightarrow 5{x^2} + 3x - 4 =0\)

\(\Leftrightarrow 5{x^2} + 3x +(- 4) =0\)

Suy ra \(a = 5,\ b = 3,\ c =  - 4.\)

LG b

\({3 \over 5}{x^2} + 2x - 7 = 3x + {1 \over 2}\)

Phương pháp giải:

+) Khai triển rồi đưa các số hạng về trái để vế phải bằng \(0\).

+) Xác định các hệ số \(a,\ b,\ c\) của phương trình bậc hai \(ax^2+bx+c=0\). 

Lời giải chi tiết:

Ta có:

\(\dfrac{3 }{5}{x^2} + 2x - 7 = 3x + \dfrac{1}{2}\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} +2 x -7-3x-\dfrac{1}{2}= 0\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} -x -\dfrac{15}{2}= 0\)

\( \Leftrightarrow \dfrac{3}{5}{x^2} +(-1).x +{\left(-\dfrac{15}{2} \right)}= 0\)

Suy ra \(a =   \dfrac{3 }{5},\ b =  - 1,\ c =  - \dfrac{15}{2}\).

LG c

\(2{x^2} + x - \sqrt 3  = \sqrt 3 x + 1\)

Phương pháp giải:

+) Khai triển rồi đưa các số hạng về trái để vế phải bằng \(0\).

+) Xác định các hệ số \(a,\ b,\ c\) của phương trình bậc hai \(ax^2+bx+c=0\). 

Lời giải chi tiết:

Ta có:

\(2{x^2} + x - \sqrt 3  = \sqrt 3 x + 1\)

\( \Leftrightarrow 2{x^2} + x - \sqrt 3   - \sqrt 3 x -1  = 0\)

\( \Leftrightarrow 2{x^2} + (1-\sqrt 3)x + (-\sqrt 3  -1)  = 0\)

Suy ra \(a =  2,\ b = 1 - \sqrt 3 ,\ c =   - \sqrt 3  -1.\)

LG d

\(2{x^2} + {m^2} = 2(m - 1)x\), \(m\) là một hằng số.

Phương pháp giải:

+) Khai triển rồi đưa các số hạng về trái để vế phải bằng \(0\).

+) Xác định các hệ số \(a,\ b,\ c\) của phương trình bậc hai \(ax^2+bx+c=0\).

Lời giải chi tiết:

Ta có:

\(2{x^2} + {m^2} = 2(m - 1)x\)

\(\Leftrightarrow 2{x^2} +m^2-2(m-1)x=0 \)

\(\Leftrightarrow 2{x^2} -2(m-1)x+m^2=0 \)

\(\Leftrightarrow 2{x^2} + [-2(m-1)]x+m^2=0 \)

Suy ra \(a =  2,\ b =  - 2(m - 1),\ c = {m^2}.\)

Loigiaihay.com

Sub đăng ký kênh giúp Ad nhé !


Bình chọn:
4.3 trên 78 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 9 - Xem ngay

>> Học trực tuyến lớp 9, luyện vào lớp 10, mọi lúc, mọi nơi môn Toán, Văn, Anh, Lý, Hóa, Sinh, Sử, Địa cùng các Thầy, Cô giáo giỏi nổi tiếng, dạy hay, dễ hiểu, dày dặn kinh nghiệm tại Tuyensinh247.com


Gửi bài