Bài 9 trang 178 SGK Đại số và Giải tích 11>
Phát biểu định nghĩa cấp số cộng và công thức tính tổng n số hạng đầu tiên của một cấp số cộng.
Đề bài
Phát biểu định nghĩa cấp số cộng và công thức tính tổng \(n\) số hạng đầu tiên của một cấp số cộng.
Video hướng dẫn giải
Lời giải chi tiết
Cấp số cộng là một dãy số (hữu hạn hoặc vô hạn) mà trong đó, kể từ số hạng thứ hai, mỗi số hạng đều bằng tổng của số hạng đứng ngay trước nó và một số \(d\) không đổi, nghĩa là: \((u_n)\) là cấp số cộng \(⇔ ∀ n ≥ 2, u_n= u_{n+1}+ d\)
Số \(d\) gọi là công sai của cấp số cộng.
Tổng của \(n\) số hạng đầu tiên của một cấp số cộng là:
\[\begin{array}{l}
{S_n} = {u_1} + {u_2} + ... + {u_n}\\
= \dfrac{{n\left( {{u_1} + {u_n}} \right)}}{2}\\
= \dfrac{{n\left[ {2{u_1} + \left( {n - 1} \right)d} \right]}}{2}
\end{array}\]
Loigiaihay.com
- Bài 10 trang 178 SGK Đại số và Giải tích 11
- Bài 11 trang 178 SGK Đại số và Giải tích 11
- Bài 12 trang 178 SGK Đại số và Giải tích 11
- Bài 13 trang 178 SGK Đại số và Giải tích 11
- Bài 14 trang 178 SGK Đại số và Giải tích 11
>> Xem thêm