Bài 3 trang 179 SGK Đại số và Giải tích 11

Bình chọn:
3 trên 7 phiếu

Giải bài 3 trang 179 SGK Đại số và Giải tích 11. Giải các phương trình

Đề bài

Giải các phương trình

a) \(2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x\)

b) \(3cos x + 4sin x = 5\)

c) \(sin x + cos x = 1 + sin x. cosx\)

d) \(\sqrt {1 - \cos x}  = \sin x(x \in \left[ {\pi ,3\pi } \right]\)

e) \((cos{x \over 4} - 3\sin x)sinx + (1 + sin{x \over 4} - 3\cos x)cosx\)\( = 0\)

Phương pháp giải - Xem chi tiết

a) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

b) Chia cả hai vế cho \(\sqrt {{a^2} + {b^2}} \).

c) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

d) Bình phương hai vế, đưa phương trình về dạng phương trình bậc hai đối với một hàm số lượng giác.

e) Phá ngoặc và nhóm các hạng tử phù hợp.

Lời giải chi tiết

a)

\(\eqalign{
& 2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}({\cos ^2}x - {\sin ^2}x) = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}.cos2x = \cos 2x\cr& \Leftrightarrow \cos 2x(2\sin {x \over 2} - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr 
\sin {x \over 2} = {1 \over 2} = \sin {\pi \over 6} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 2} + k\pi \hfill \cr 
\left[ \matrix{
{x \over 2} = {\pi \over 6} + k2\pi \hfill \cr 
{x \over 2} = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + k\pi \hfill \cr 
x = {\pi \over 3} + k4\pi \hfill \cr 
x = {{5\pi } \over 3} + k4\pi \hfill \cr} \right.(k \in\mathbb Z) \cr} \)

 b) Ta có: 

\(\eqalign{
& 3cos{\rm{ }}x + 4sin{\rm{ }}x = 5 \cr 
& \Leftrightarrow {3 \over 5}\cos x + {4 \over 5}\sin x = 1 \cr 
& \Leftrightarrow \cos x\cos \varphi + \sin x\sin \varphi = 1\cr&(\text { với }cos\varphi = {3 \over 5};\sin \varphi = {4 \over 5}) \cr 
& \Leftrightarrow \cos (x - \varphi ) = 1 \cr 
& \Leftrightarrow x - \varphi = k2\pi \,\,\,(k \in\mathbb Z) \cr 
& \Leftrightarrow x = \varphi + k2\pi \,\,\,(k \in\mathbb Z)\cr} \)

\(c) \,\,sin x + cosx = 1 + sinx. cosx\)

\(⇔ sin x – sin x. cosx + cosx – 1= 0\)

\(⇔ sin x ( 1 – cosx) – (1 – cosx) = 0\)

\(\eqalign{
& \Leftrightarrow (1 - \cos x)(\sin x - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm cosx}\nolimits} = 1 \hfill \cr 
sinx = 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = k2\pi \hfill \cr 
x = {\pi \over 2} + k2\pi \hfill \cr} \right.(k \in \mathbb Z) \cr} \)

d) Điều kiện \(\sin x ≥ 0\). Khi đó:

\(\eqalign{
& \sqrt {1 - \cos x} = \sin x \cr 
& \Leftrightarrow 1\cos x = {\sin ^2}x \cr 
& \Leftrightarrow 1 - {\sin ^2}x - \cos x = 0 \cr 
& \Leftrightarrow {\cos ^2}x - \cos x = 0 \cr 
& \Leftrightarrow \cos x(cosx - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos x = 0 \hfill \cr 
\cos x = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr 
x = k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

\(\begin{array}{l}
\pi \le \frac{\pi }{2} + k\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{5}{2} \\ \mathop \Rightarrow \limits^{k \in Z} \left[ \begin{array}{l}
k = 1 \Rightarrow x = \frac{{3\pi }}{2}\,\,\left( {ktm\,\,\sin x \ge 0} \right)\\
k = 2\,\,\left( {tm} \right)
\end{array} \right.\\
\pi \le k2\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{3}{2}\mathop \Rightarrow \limits^{k \in Z} k = 1 \Rightarrow x = 2\pi \,\,\left( {tm} \right)
\end{array}\)

Vì \(\sin \frac{{5x}}{4} \le 1;\,\,\cos x \le 1 \Rightarrow \sin \frac{{5x}}{4} + \cos x \le 2 < 3 \Rightarrow \) phương trình trên vô nghiệm.

loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến các môn lớp 11, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Các bài liên quan