Bài 3 trang 179 SGK Đại số và Giải tích 11

Bình chọn:
3 trên 7 phiếu

Giải bài 3 trang 179 SGK Đại số và Giải tích 11. Giải các phương trình

Đề bài

Giải các phương trình

a) \(2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x\)

b) \(3cos x + 4sin x = 5\)

c) \(sin x + cos x = 1 + sin x. cosx\)

d) \(\sqrt {1 - \cos x}  = \sin x(x \in \left[ {\pi ,3\pi } \right])\)

e) \((cos{x \over 4} - 3\sin x)sinx + (1 + sin{x \over 4} - 3\cos x)cosx\)\( = 0\)

Phương pháp giải - Xem chi tiết

a) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

b) Chia cả hai vế cho \(\sqrt {{a^2} + {b^2}} \).

c) Đưa phương trình về dạng tích, giải phương trình lượng giác cơ bản.

d) Bình phương hai vế, đưa phương trình về dạng phương trình bậc hai đối với một hàm số lượng giác.

e) Phá ngoặc và nhóm các hạng tử phù hợp.

Lời giải chi tiết

a)

\(\eqalign{
& 2\sin {x \over 2}{\cos ^2}x - 2\sin {x \over 2}{\sin ^2}x = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}({\cos ^2}x - {\sin ^2}x) = {\cos ^2}x - {\sin ^2}x \cr 
& \Leftrightarrow 2\sin {x \over 2}.cos2x = \cos 2x\cr& \Leftrightarrow \cos 2x(2\sin {x \over 2} - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos 2x = 0 \hfill \cr 
\sin {x \over 2} = {1 \over 2} = \sin {\pi \over 6} \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
2x = {\pi \over 2} + k\pi \hfill \cr 
\left[ \matrix{
{x \over 2} = {\pi \over 6} + k2\pi \hfill \cr 
{x \over 2} = \pi - {\pi \over 6} + k2\pi \hfill \cr} \right. \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = {\pi \over 4} + \frac{k\pi}{2} \hfill \cr 
x = {\pi \over 3} + k4\pi \hfill \cr 
x = {{5\pi } \over 3} + k4\pi \hfill \cr} \right.(k \in\mathbb Z) \cr} \)

 b) Ta có: 

\(\eqalign{
& 3cos{\rm{ }}x + 4sin{\rm{ }}x = 5 \cr 
& \Leftrightarrow {3 \over 5}\cos x + {4 \over 5}\sin x = 1 \cr 
& \Leftrightarrow \cos x\cos \varphi + \sin x\sin \varphi = 1\cr&(\text { với }cos\varphi = {3 \over 5};\sin \varphi = {4 \over 5}) \cr 
& \Leftrightarrow \cos (x - \varphi ) = 1 \cr 
& \Leftrightarrow x - \varphi = k2\pi \,\,\,(k \in\mathbb Z) \cr 
& \Leftrightarrow x = \varphi + k2\pi \,\,\,(k \in\mathbb Z)\cr} \)

\(c) \,\,sin x + cosx = 1 + sinx. cosx\)

\(⇔ sin x – sin x. cosx + cosx – 1= 0\)

\(⇔ sin x ( 1 – cosx) – (1 – cosx) = 0\)

\(\eqalign{
& \Leftrightarrow (1 - \cos x)(\sin x - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
{\mathop{\rm cosx}\nolimits} = 1 \hfill \cr 
sinx = 1 \hfill \cr} \right. \cr 
& \Leftrightarrow \left[ \matrix{
x = k2\pi \hfill \cr 
x = {\pi \over 2} + k2\pi \hfill \cr} \right.(k \in \mathbb Z) \cr} \)

d) Điều kiện \(\sin x ≥ 0\). Khi đó:

\(\eqalign{
& \sqrt {1 - \cos x} = \sin x \cr 
& \Leftrightarrow 1-\cos x = {\sin ^2}x \cr 
& \Leftrightarrow 1 - {\sin ^2}x - \cos x = 0 \cr 
& \Leftrightarrow {\cos ^2}x - \cos x = 0 \cr 
& \Leftrightarrow \cos x(cosx - 1) = 0 \cr 
& \Leftrightarrow \left[ \matrix{
\cos x = 0 \hfill \cr 
\cos x = 1 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = {\pi \over 2} + k\pi \hfill \cr 
x = k2\pi \hfill \cr} \right.;k \in\mathbb Z \cr}\)

\(\begin{array}{l}
\pi \le \frac{\pi }{2} + k\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{5}{2} \\ \mathop \Rightarrow \limits^{k \in Z} \left[ \begin{array}{l}
k = 1 \Rightarrow x = \frac{{3\pi }}{2}\,\,\left( {ktm\,\,\sin x \ge 0} \right)\\
k = 2\,\,\left( {tm} \right)
\end{array} \right.\\
\pi \le k2\pi \le 3\pi \\ \Leftrightarrow \frac{1}{2} \le k \le \frac{3}{2}\mathop \Rightarrow \limits^{k \in Z} k = 1 \Rightarrow x = 2\pi \,\,\left( {tm} \right)
\end{array}\)

Vì \(\sin \frac{{5x}}{4} \le 1;\,\,\cos x \le 1 \Rightarrow \sin \frac{{5x}}{4} + \cos x \le 2 < 3 \Rightarrow \) phương trình trên vô nghiệm.

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

Bài 4 trang 179 SGK Đại số và Giải tích 11 Bài 4 trang 179 SGK Đại số và Giải tích 11

Giải bài 4 trang 179 SGK Đại số và Giải tích 11. Trong một bệnh viện có 40 bác sĩ ngoại khoa. Hỏi có bao nhiêu cách phân công ca mổ, nếu mỗi ca gồm:

Xem chi tiết
Bài 5 trang 179 SGK Đại số và Giải tích 11 Bài 5 trang 179 SGK Đại số và Giải tích 11

Giải bài 5 trang 179 SGK Đại số và Giải tích 11. Tìm số hạng không chứa a trong khai triển nhị thức

Xem chi tiết
Bài 6 trang 179 SGK Đại số và Giải tích 11 Bài 6 trang 179 SGK Đại số và Giải tích 11

Giải bài 6 trang 179 SGK Đại số và Giải tích 11. Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

Xem chi tiết
Bài 7 trang 179 SGK Đại số và Giải tích 11 Bài 7 trang 179 SGK Đại số và Giải tích 11

Giải bài 7 trang 179 SGK Đại số và Giải tích 11. Một tiểu đội có 10 người được xếp ngẫu nhiên thành hàng dọc, trong đó có anh A và anh B. Tính xác suất sao cho:

Xem chi tiết
Bài 4 trang 37 SGK Đại số và Giải tích 11 Bài 4 trang 37 SGK Đại số và Giải tích 11

Giải bài 4 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau:

Xem chi tiết
Bài 3 trang 37 SGK Đại số và Giải tích 11 Bài 3 trang 37 SGK Đại số và Giải tích 11

Giải bài 3 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau:

Xem chi tiết
Bài 5 trang 37 SGK Đại số và Giải tích 11 Bài 5 trang 37 SGK Đại số và Giải tích 11

Giải bài 5 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau.

Xem chi tiết
Bài 6 trang 37 SGK Đại số và Giải tích 11 Bài 6 trang 37 SGK Đại số và Giải tích 11

Giải bài 6 trang 37 SGK Đại số và Giải tích 11. Giải các phương trình sau.

Xem chi tiết

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu