Bài 6 trang 179 SGK Đại số và Giải tích 11


Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

Video hướng dẫn giải

Lựa chọn câu để xem lời giải nhanh hơn

Chọn ngẫu nhiên ba học sinh từ một tổ gồm sáu nam và bốn nữ. Tính xác suất sao cho:

LG a

Cả ba học sinh đều là nam

Phương pháp giải:

Chọn ba học sinh nam trong 6 học sinh nam.

Lời giải chi tiết:

Không gian mẫu gồm các tổ hợp chập \(3\) của \(10\) học sinh. Vậy \(n(\Omega ) = C_{10}^3 = 120\)

Gọi \(A\) là biến cố cả ba học sinh đều là nam được chọn

Số cách chọn \(3\) trong \(6\) nam là tổ hợp chập \(3\) của \(6\) (nam)

Ta có: \(n(A) = C_6^3 = 20\)

Vậy: \(P(A) = {{n(A)} \over {n(\Omega )}} = {{20} \over {120}} = {1 \over 6}\)

LG b

Có ít nhất một nam

Phương pháp giải:

Sử dụng biến cố đối.

Lời giải chi tiết:

Gọi \(B\) là biến cố có ít nhất một nam được chọn

Ta có: \(\overline B\) là biến cố không có nam (nghĩa là có \(3\) nữ)

Số cách chọn \(3\) trong 4 nữ là : \(n( \overline B) = C_4^3 = 4\)

Suy ra:

\(\eqalign{
& P(\overline B) = {4 \over {120}} = {1 \over {30}} \cr 
& \Rightarrow P(B) = 1 - {1 \over {30}} = {{29} \over {30}} \cr} \)

Loigiaihay.com


Bình chọn:
3.8 trên 6 phiếu

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>> Học trực tuyến Lớp 11 trên Tuyensinh247.com. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.


Hỏi bài