Bài 13 trang 180 SGK Đại số và Giải tích 11

Bình chọn:
3.7 trên 7 phiếu

Giải bài 13 trang 180 SGK Đại số và Giải tích 11. Tính các giới hạn sau

Lựa chọn câu để xem lời giải nhanh hơn

Tính các giới hạn sau

LG a

\(\mathop {\lim }\limits_{x \to  - 2} {{6 - 3x} \over {\sqrt {2{x^2} + 1} }}\)

Phương pháp giải:

Thay \(x=-2\)

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  - 2} {{6 - 3x} \over {\sqrt {2{x^2} + 1} }} = {{6 - 3( - 2)} \over {\sqrt {2{{( - 2)}^2} + 1} }} = {{12} \over 3} = 4\)

LG b

\(\mathop {\lim }\limits_{x \to 2} {{x - \sqrt {3x - 2} } \over {{x^2} - 4}}\)

Phương pháp giải:

Nhân cả tử và mẫu với biểu thức liên hợp của \(x - \sqrt {3x - 2} \), sau đó đưa tử và mẫu về dạng tích để rút gọn nhân tử \(x-2\).

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to 2} {{x - \sqrt {3x - 2} } \over {{x^2} - 4}} \cr
& = \mathop {\lim }\limits_{x \to 2} {{(x - \sqrt {x - 2} )(x + \sqrt {3x - 2} )} \over {({x^2} - 4)(x + \sqrt {3x - 2} )}} \cr
& = \mathop {\lim }\limits_{x \to 2} {{{x^2} - 3x + 2} \over {({x^2} - 4)(x + \sqrt {3x - 2} )}} \cr
& = \mathop {\lim }\limits_{x \to 2} {{(x - 2)(x - 1)} \over {(x - 2)(x + 2)(x + \sqrt {3x - 2)} }} \cr
& = \mathop {\lim }\limits_{x \to 2} {{x - 1} \over {(x + 2)(x + \sqrt {3x - 2} )}} \cr
& = {{2 - 1} \over {(2 + 2)(2 + \sqrt {3.2 - 2} )}} = {1 \over {16}} \cr} \)

LG c

\(\mathop {\lim }\limits_{x \to {2^ + }} {{{x^2} - 3x + 1} \over {x - 2}}\)

Phương pháp giải:

Sử dụng đánh giá giới hạn \(\frac{L}{0}\)

Lời giải chi tiết:

Ta có:

+) \(\mathop {\lim }\limits_{x \to {2^ + }} ({x^2} - 3x + 1) = 4 - 6 + 1 =  - 1\) 

+) \(\left\{ \matrix{
x - 2 > 0 \hfill \cr 
\mathop {\lim }\limits_{x \to {2^ + }} (x - 2) = 0 \hfill \cr} \right.\)

Do đó: \(\mathop {\lim }\limits_{x \to {2^ + }} {{{x^2} - 3x + 1} \over {x - 2}} =  - \infty \)

LG d

\(\mathop {\lim }\limits_{x \to {1^ - }} (x + {x^2} + ... + {x^n} - {n \over {1 - x}});n \in {N^*}\)

Phương pháp giải:

Sử dụng đánh giá giới hạn \(\frac{L}{0}\) tính giới hạn \(\lim \frac{n}{{1 - x}}\)

Lời giải chi tiết:

Ta có:

\(\eqalign{
& \mathop {\lim }\limits_{x \to 1^-} (x + {x^2} + ... + {x^n} - {n \over {1 - x}}) = - \infty \cr 
& \left\{ \matrix{
1 - x > 0,\forall x < 1 \hfill \cr 
\mathop {\lim }\limits_{x \to {1^ - }} (1 - x) = 0 \hfill \cr} \right. \cr} \)

+ Suy ra: \(\mathop {\lim }\limits_{x \to {1^ - }} {n \over {1 - x}} =  + \infty \)

+ Do đó: \(\mathop {\lim }\limits_{x \to {1^ - }} (x + {x^2} + ... + {x^n} - {n \over {1 - x}}) =  - \infty \)

LG e

\(\mathop {\lim }\limits_{x \to  + \infty } {{2x - 1} \over {x + 3}}\)

Phương pháp giải:

Chia cả tử và mẫu cho x.

Lời giải chi tiết:

\(\mathop {\lim }\limits_{x \to  + \infty } {{2x - 1} \over {x + 3}} = \mathop {\lim }\limits_{x \to  + \infty } {{x(2 - {1 \over x})} \over {x(1 + {3 \over x})}} = \mathop {\lim }\limits_{x \to  + \infty } {{2 - {1 \over x}} \over {1 + {3 \over x}}} = 2\)

LG f

\(\mathop {\lim }\limits_{x \to  - \infty } {{x + \sqrt {4{x^2} - 1} } \over {2 - 3x}}\)

Phương pháp giải:

Chia cả từ và mẫu cho x, lưu ý căn bậc hai.

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } {{x + \sqrt {4{x^2} - 1} } \over {2 - 3x}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x + |x|\sqrt {4 - {1 \over {{x^2}}}} } \over {2 - 3x}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x - x\sqrt {4 - {1 \over {{x^2}}}} } \over {2 - 3x}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{x(1 - \sqrt {4 - {1 \over {{x^2}}}} )} \over {x({2 \over x} - 3)}} \cr
& = \mathop {\lim }\limits_{x \to - \infty } {{1 - \sqrt {4 - {1 \over {{x^2}}}} } \over {{2 \over x} - 3}} \cr
& = {{1 - \sqrt 4 } \over { - 3}} = {1 \over 3} \cr} \)

LG g

\(\mathop {\lim }\limits_{x \to  - \infty } ( - 2{x^3} + {x^2} - 3x + 1)\)

Phương pháp giải:

Đặt \(x^3\) ra ngoài, đánh giá giới hạn của từng nhân tử và dấu của chúng.

Lời giải chi tiết:

\(\eqalign{
& \mathop {\lim }\limits_{x \to - \infty } ( - 2{x^3} + {x^2} - 3x + 1) \cr 
& = \mathop {\lim }\limits_{x \to - \infty } {x^3}( - 2 + {1 \over x} - {3 \over {{x^2}}} + {1 \over {{x^3}}}) = + \infty \cr}\)

Loigiaihay.com

Luyện Bài tập trắc nghiệm môn Toán lớp 11 - Xem ngay

>>Học trực tuyến Lớp 11 trên Tuyensinh247.com, mọi lúc, mọi nơi tất cả các môn. Các thầy cô giỏi nổi tiếng, dạy hay dễ hiểu

Gửi văn hay nhận ngay phần thưởng